
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2012

Resource allocation in wireless networks with flow
level dynamics
Shihuan Liu
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons, and the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Liu, Shihuan, "Resource allocation in wireless networks with flow level dynamics" (2012). Graduate Theses and Dissertations. 12963.
https://lib.dr.iastate.edu/etd/12963

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12963&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12963&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F12963&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Fetd%2F12963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12963?utm_source=lib.dr.iastate.edu%2Fetd%2F12963&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Resource allocation in wireless networks with flow level dynamics

by

Shihuan Liu

A dissertation submitted to the Graduate Faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Lei Ying, Major Professor

Morris Chang
Yong Guan

Ahmed E. Kamal
Srikanta Tirthapura

Iowa State University

Ames, Iowa

2012

Copyright c⃝ Shihuan Liu, 2012. All rights reserved.

www.manaraa.com

ii

DEDICATION

I first would like to dedicate this thesis to my parents. Without their support I would not

be able to come to U.S. to pursue my Ph.D. degree and complete it successfully. I also would

like to thank my advisor, Prof. Lei Ying, without his outstanding guidance I would not know

what is research and how to do research. I finally would like to thank all my friends for their

warm friendship and unreserved help in my life.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER 1. Introduction . 1

CHAPTER 2. Scheduling in Single-channel Wireless Cellular Networks . . 9

2.1 Basic Model . 10

2.2 Workload-based Scheduling with Learning . 11

2.3 Necessary Conditions for Stability . 14

2.4 Throughput Optimality of WSL . 16

2.5 Proofs . 20

2.5.1 Proof of Theorem 2 . 20

2.5.2 Proof of Theorem 3 . 25

2.6 Simulations . 32

2.7 Conclusions and Discussions . 40

2.7.1 The Choice of D . 41

2.7.2 Unbounded File Arrivals and File Sizes 41

CHAPTER 3. Scheduling in OFDM-based Wireless Cellular Networks . . . 42

3.1 Basic Model . 42

3.2 Joint Channel Assignment and Workload Based Scheduling 44

3.2.1 Necessary Conditions for Stability . 46

3.2.2 Joint Channel-Assignment and Workload-based Scheduling 47

3.3 A Throughput-Optimal Hybrid CA-WS Algorithm 51

www.manaraa.com

iv

3.3.1 Throughput Optimality of the Hybrid CA-WS Algorithm 54

3.4 Simulations . 67

3.5 Conclusion . 70

CHAPTER 4. Joint Congestion Control and Scheduling in Wireless Peer-

to-peer Networks . 71

4.1 Network Model . 71

4.2 Optimization Formulation . 73

4.3 A Duality Theory Approach . 75

4.4 Online Algorithm . 76

4.4.1 Scheduler and Service Controller . 76

4.4.2 Performance Analysis . 77

4.5 A Different Utility Function . 79

4.6 Proofs . 81

4.6.1 Proof of Lemma 9 . 81

4.6.2 Proof of Theorem 12 . 85

4.7 Simulations . 86

4.7.1 On the Limitations of a Previous Approach 86

4.7.2 The Effect on Users’ Behavior of the Utility Function 89

4.8 Conclusion . 93

CHAPTER 5. Scheduling in Multihop Wireless Networks 95

5.1 Basic Model . 96

5.2 Necessary Conditions for Stability . 97

5.3 Self-Regulated MaxWeight Scheduling for Multihop Wireless Networks 97

5.4 Simulations . 108

5.4.1 Simulation Settings . 108

5.4.2 The Case of Constant Arrivals . 109

5.4.3 The Case of Light-tailed Stochastic Traffic 112

5.4.4 The Case of Heavy-tailed Stochastic Traffic 113

www.manaraa.com

v

5.5 Conclusion . 113

CHAPTER 6. Summary and Acknowledgement 116

BIBLIOGRAPHY . 117

www.manaraa.com

vi

LIST OF TABLES

3.1 The distributions of channel rates . 68

4.1 The steady-state distribution of users’ location when α = 5 92

4.2 Total network throughput when α = 5 92

4.3 The steady-state distribution of users’ location when α = 1 94

5.1 The flows in the network . 109

www.manaraa.com

vii

LIST OF FIGURES

2.1 Scheme-1 treats M-flows as short-lived flows, and Scheme-2 treats M-

flows as long-lived flows . 34

2.2 The performance of WSLU with D = 16 and D = ∞ when the traffic

load is light or medium . 35

2.3 The performance of the Delay-based, MaxWeight, and WSLU algo-

rithms in a network without L-flows . 37

2.4 The performance of the Delay-based, MaxWeight, and WSLU algo-

rithms in a network with both S-flows and L-flows 37

2.5 The blocking probabilities of the Delay-based, MaxWeight, and WSLU

in a network without L-flows . 38

2.6 The blocking probabilities of the Delay-based, MaxWeight, and WSLU

in a network with L-flows . 38

2.7 The performance of the WSLU and WSLO algorithms in a network

without L-flows . 39

2.8 The performance of the WSLU and WSLO algorithms in a network

with both S-flows and L-flows . 39

2.9 The blocking probabilities of the WSLU and WSLO in a network with-

out L-flows . 40

2.10 The blocking probabilities of the WSLU and WSLO in a network with

L-flows . 40

3.1 A two-channel, three-mobile downlink network 43

3.2 Average file-transfer delay of the CA-WS and MaxWeight algorithms . 50

www.manaraa.com

viii

3.3 The sequence of flow/packet arrivals, computation or recomputation of

h(t) and packet departures within a time slot 52

3.4 Five subsets of G(n) . 59

3.5 The average numbers of flows under the CA-WSU, hybrid CA-WSU

and MaxWeight algorithms . 69

3.6 The average file-transfer delays under the CA-WSU, hybrid CA-WSU

and MaxWeight algorithms . 69

3.7 The blocking probabilities of the CA-WSU, the hybrid CA-WSU and

MaxWeight algorithms . 70

4.1 Interference graph used in the simulations 87

4.2 Throughput for the Fraction-based algorithm 87

4.3 Throughput for the Real-time MaxWeight algorithm 88

4.4 Comparison of total network throughput 89

4.5 Throughput for the Fraction-based algorithm when α varies 89

4.6 Total throughput for the Fraction-based algorithm 90

4.7 Users’ location under the Fraction-based algorithm when α = 5 91

4.8 Users’ location under the Rate-based algorithm when α = 5 91

4.9 Users’ location under the Fraction-based algorithm when α = 1 93

4.10 Users’ location under the Rate-based algorithm when α = 1 93

5.1 The two-stage queue architecture . 98

5.2 The notations and the flows . 100

5.3 Network topology . 108

5.4 Total queue lengths in the network under constant arrivals 109

5.5 Average end-to-end delay under constant arrivals 110

5.6 Cumulative queue lengths versus hops under constant arrivals 111

5.7 Total queue lengths in the network under Poisson arrivals 112

5.8 Average end-to-end delay under Poisson arrivals 113

www.manaraa.com

ix

5.9 Cumulative queue lengths versus hops under Poisson arrivals 114

5.10 Total queue lengths in the network under Pareto arrivals 114

5.11 Average end-to-end delay under Pareto arrivals 115

5.12 Cumulative queue lengths versus hops under Pareto arrivals 115

www.manaraa.com

1

CHAPTER 1. Introduction

With the ever increasing popularity of wireless networks, wireless devices are prevalent

in our daily life. With cell phones and cellular networks, we can chat with others almost

everywhere and anytime; with laptops and Wi-Fi access points, we can easily access a large

variety of information online; and with GPS on our vehicles, driving has become much easier

than before. Wireless communications have become such an important technology, and is

penetrating every aspect of our daily life. Nowadays, wireless networks not only need to support

traditional voice communications, but also are carrying more and more Internet traffics such

as e-mails, instant messages, and even video streaming. All these applications are demanding

wireless networks to support fast and reliable communications.

To build a high-performance wireless network, a key challenge is to allocate the wireless

resources dynamically and efficiently among users. This resource allocation problem or schedul-

ing problem is at the core of wireless network design. Compared to traditional wired networks,

this scheduling in wireless networks is much harder because of the reasons listed below. First

of all, the bandwidth of wireless networks is limited. A typical transmission rate in a wireless

network is at the order of tens of megabits per second, while gigabits per second transmission

rate can be easily achieved in wired networks. Second, in wireless communications, channel

quality may vary significantly across users, locations and time. We therefore need to learn

channel conditions and schedule links intelligently based on channel qualities. Finally, nearby

transmissions can significantly interfere with each other, so we cannot activate all link at the

same time and need to schedule them properly. In a summary, limited bandwidth, rapidly

varying channel qualities and wireless interference make it difficult to design high performance

scheduling algorithms in wireless networks, which is the key to the success of next-generation

www.manaraa.com

2

wireless networks.

In this thesis, I first looked at the scheduling problem in the downlink of wireless cellu-

lar networks. Designing multiuser scheduling algorithms in cellular networks is a very chal-

lenging problem because of multi-scale dynamics: channel-level dynamics (channel fading),

packet-level dynamics (stochastic packet arrivals) and flow-level dynamics (dynamic flow ar-

rivals/departures). A seminal result in this area is the celebrated MaxWeight scheduling [14],

which deals with both channel-level and packet-level dynamics by selecting users based on the

product of channel state and queue length. Under the assumption that the set of users/nodes

is fixed and all traffic flows are persistent, the MaxWeight scheduling is throughput optimal

for general channel and traffic models [4–6]. In other words, it can stabilize any traffic that is

stabilizable by any other schemes.

While the results in [3–6] demonstrate the power of MaxWeight-based algorithms, they

were obtained under the assumptions that the number of users in the network is fixed and the

traffic flow generated by each user is long-lived, i.e., each user continually injects new bits into

the network. In other words, flow-level dynamics is not considered in these results. However,

in practical systems, users dynamically arrive to transmit data and leave the network after

the data are fully transmitted. In a recent paper [1], the authors showed that the MaxWeight

algorithm is in fact not throughput optimal in networks with flow-level dynamics by providing

a clever example showing the instability of the MaxWeight scheduling. The intuition is as

follows: if a long-lived flow does not receive enough service, its backlog builds up, which forces

the MaxWeight scheduler to allocate more service to the flow. This interaction between user

backlogs and scheduling guarantees the correctness of the resource allocation. However, if a

flow has only a finite number of bits, its backlog does not build up over time and it is possible

for the MaxWeight to stop serving such a flow and thus, the flow may stay in the network

forever. Thus, in a network where finite-sized flows continue to arrive, the number of flows in

the network could increase to infinity. One may wonder why flow-level instability is important

since, in real networks, base stations limit the number of simultaneously active flows in the

network by rejecting new flows when the number of existing flows reaches a threshold. The

www.manaraa.com

3

reason is that, if a network model without such upper limits is unstable in the sense that the

number of flows grows unbounded, then the corresponding real network with an upper limit

on the number of flows will experience high flow blocking rates. This fact is demonstrated in

the simulation parts of Chapter 2 and Chapter 3 later.

In [1], the authors address this instability issue of MaxWeight-based algorithms, and estab-

lish necessary and sufficient conditions for the stability of networks with flow-level dynamics.

The authors also propose throughput-optimal scheduling algorithms. However, as the authors

mention in [1], the proposed algorithms require prior knowledge of channel distribution and

traffic distribution, which is difficult and sometimes impossible to obtain in practical systems,

and further, the performance of the proposed algorithms is also not ideal. A delay-driven

MaxWeight scheduler has also been proposed to stabilize the network under flow-level dynam-

ics [2]. The algorithm however works only when the maximum achievable rates of the flows

are identical.

Since flow arrivals and departures are common in reality, the focus of my Ph.D. study is to

develop practical scheduling algorithms that are throughput-optimal under flow-level dynamics.

I first studied the single-channel case, where we consider a wireless downlink system with a

single base station and multiple users (flows), and the base station uses a single frequency

band (channel) for transmission. Based on this model, first, the necessary conditions for flow-

level stability of networks were obtain. I have also developed algorithms that are based on

the estimated workload, the number of time slots required to transmit the remainder of a flow

based on the best channel condition seen by the flow so far for scheduling and proved that the

algorithm is throughput-optimal under flow-level dynamics.

After that, motivated by current and next generation cellular systems (e.g., WiMax and

LTE) implementing the Orthogonal Frequency Division Multiplexing (OFDM), I have inves-

tigated multichannel wireless cellular networks. These systems have hundreds of sub-carriers,

and are grouped into tens of channels for scheduling purposes. In a multichannel network,

the base station can transmit to multiple mobile users simultaneously over different channels.

Specifically, similar to the single-channel case, we consider a downlink wireless network where

www.manaraa.com

4

a base station is responsible for scheduling downlink transmissions. We assume mobile users

dynamically join the network for receiving finite-sized files and leave the network after down-

loading the files. For such multichannel wireless networks, an important question that should

be answered is the following: Are the algorithms designed for single-channel networks [1,2,16]

still throughput optimal for multichannel networks in the presence of flow-level dynamics? The

answer to this question is no. A counter example will be presented in Chapter 3. In fact in

multichannel wireless networks, the base station not only needs to decide which flow to serve on

each channel, but also how to split a flow across multiple channels. We call the second prob-

lem the channel-assignment problem. Designing the channel-assignment algorithm is a key

contribution of this chapter, which makes both the intuition and the analysis fundamentally

different from those for single-channel networks.

Based on the ideas stated above, we first derive the necessary conditions for the stability

of multi-channel downlink networks in the presence of flow-level dynamics. Then, we develop

a throughput optimal algorithm, which we call joint channel-assignment and workload-based

scheduling (CA-WS), in which the channel assignment algorithm is derived based on an op-

timization formulation and its Lagrangian dual. We prove that the CA-WS algorithm is

throughput optimal in the presence of flow-level dynamics. Although it seems that by now we

have solved the problem, a problem comes up, which is that the CA-WS algorithm starts to

serve a flow only after the complete file is received at the base-station, so the performance of

the CA-WS is worse than the MaxWeight in light or medium traffic regimes. We then propose

a hybrid CA-WS algorithm, which schedules those flows who are still injecting packets to the

base station using the MaxWeight scheduling; and schedules fully arrived flows (those flows who

have been completely transferred to the base-station) using an algorithm called workload-based

scheduling. The hybrid CA-WS algorithm seamlessly combines the MaxWeight scheduling and

the workload-based scheduling, and we prove that it is also throughput optimal in multichannel

downlink networks with flow-level dynamics. Simulation results will be presented in Chapter

3 to validate the performances of the proposed algorithms.

During my Ph.D. study, I also investigated the resource allocation problem in wireless

www.manaraa.com

5

peer-to-peer networks in the presence of flow-level dynamics for real-time traffic, i.e., each

packet is associated with a hard deadline. In wireless peer-to-peer networks, each pair of

users is allowed to communicate directly with each other. All transmissions are single-hop.

This communication pattern is more efficient compared to the transmission pattern in cellular

networks in the sense that the delivery of each packet no longer needs to go through two hops

- uplink and downlink. However, in wireless peer-to-peer networks, the admission control and

medium access control are very important because concurrent transmissions may cause severe

interference if they are not arranged wisely. We assume there is a limited-functional central

controller in the wireless peer-to-peer network, which schedules transmissions in each time

slot, and our objective is designing a joint congestion control and scheduling algorithm which

maximizes the network welfare while satisfying the delay constraints of the users.

The well-known MaxWeight scheduler [3, 14] is still throughput optimal here when the

user population is fixed, but no longer provides maximum throughput in the presence of flow-

level dynamics. We have developed novel solutions to handle this problem in wireless cellular

networks. However, none of them are meant to support the traffic with strict delay constraints.

In Chapter 4, we propose an optimization formulation for the problem of service allocation

and scheduling of real-time messages under strict per-message deadline constraints in wireless

peer-to-peer networks. We show that using the fact that the network is aware of the location of

the devices allows us to deal with the difficulty of scheduling small-sized messages, translating

the problem of serving message requests into a long-term formulation where messages are

grouped by regions where channel and interference conditions are similar. The formulation

allows for very general interference constraints and arrival models. Based on this modeling, we

design an optimal service controller and scheduler that allocates service such that it maximizes

the total network utility in a stochastic sense, while meeting deadline constraints. Through

simulations we compare our algorithm against the MaxWeight scheduling algorithm which is

an optimal solution for scheduling persistent real-time traffic and show the limitations of the

MaxWeight approach to handle real-time messages for providing fairness, and the need to

develop a new approach.

www.manaraa.com

6

After addressing the resource allocation problem in wireless networks with single-hop traf-

fic flows, I started to look at the resource allocation in wireless networks with multihop flows.

Although most of existing practical wireless networks include only single-hop data transmis-

sions, multi-hop wireless networks have many important applications and are expected to be

deployed in future.

A widely-used algorithm to stabilize multi-hop flows in wireless networks is the back-

pressure algorithm proposed in [3], which can stabilize any traffic flows that can be supported

by any other routing/scheduling algorithm. We refer to [9, 10] for a comprehensive survey on

the back-pressure algorithm and its variations. A key idea of the back-pressure algorithm is

to use largest queue difference as link weight, and schedule the links with largest aggregated

weights. Therefore, the back-pressure algorithm requires constant exchange of queue-length

information among neighboring nodes. Furthermore, under the back pressure algorithm, the

sum of the queue lengths along a route increases quadratically as the route length [18], which

leads to poor delay performance. The most important thing is, the back-pressure algorithm

is optimal only for the network without flow-level dynamics. When the system has flow-level

dynamics, it is no longer throughput optimal as pointed out in [1].

To address the scheduling problem in the presence of flow-level dynamics, we can think

of the nodes in wireless ad-hoc networks as “access points” (AP). Each user who wants to

transmit data should first associate with a particular AP and transmit data to it, and then

the associated AP will forward the data to the destination AP through wireless links, who

will finally dump the data to the destination user. By doing this we “translate” the flow-

level dynamics to packet-level dynamics. Now the question is, considering the drawbacks of

the back-pressure algorithm, can the network be stabilized without using back pressure? We

address this question in a multi-hop wireless network with fixed routing. We note that a

multi-hop flow with a fixed route can be broken into multiple single-hop flows, one for each

link on the route. A scheduling policy that stabilizes the collection of single-hop flows also

provides sufficient service for supporting the set of multi-hop flows. Therefore, assuming each

link knows the aggregated rate it needs to carry, an alternative scheduling approach is to let

www.manaraa.com

7

each link generate virtual packets according to the aggregated rate and then let the network

schedule the links according to the virtual queues. When a virtual queue is scheduled, real

packets are served according to the allocated link rate. This approach is throughput optimal

under the fixed routing assumption, but again requires information exchange in network. A

source needs to estimate the arrival rate of the associated flow and communicate the rate to

all nodes along the route of the flow. A directly following question is whether and under what

conditions, it is possible to stabilize a network without explicitly exchanging any information

among nodes in the network.

In Chapter 5, we present an algorithm that can achieve this goal for networks where (i)

the arrival rates of flows follow some statistical property, and (ii) routes of flows are fixed. We

propose a self-regulated MaxWeight scheduling algorithm where each node estimates the ag-

gregated link rate locally, i.e., by taking average over the past arrivals on that link. We would

like to emphasize that the accuracy of link-rate estimates relies on the stability of the network

because if one queue builds up, it blocks packets to down-stream nodes so that those nodes

cannot accurately estimate the link rates. On the other hand, the stability of the network relies

on the accuracy of the link-rate estimates. This is an interesting paradox which makes the

stability of the self-regulated MaxWeight scheduling a non-trivial problem. In Chapter 5, we

prove that the self-regulated MaxWeight scheduling is throughput optimal when both (i) and

(ii) are satisfied. The self-regulated MaxWeight scheduling combined with distributed schedul-

ing algorithms such as the CSMA-based scheduling [19–21] provides a scheduling algorithm for

multi-hop wireless networks, which does not require any information exchange in the network.

Finally, we would like to comment that the proposed algorithm is motivated by the idea of

regulators, which was first proposed for re-entrant lines in [22] and later used for scheduling

in wireless networks [23]. Our algorithm however does not require any information exchange

in network, while the algorithm in [23] requires the mean arrival rates to be communicated to

regulators in the network.

The rest of the report is organized as follows. In Chapter 2 and 3, I present our works on

wireless cellular networks, for the single-channel case and the multi-channel case respectively.

www.manaraa.com

8

In Chapter 4, our work on the resource allocation problem in wireless peer-to-peer networks is

presented. The solution to the scheduling problem in wireless multi-hop networks is introduced

in Chapter 5. In Chapter 6, I conclude my Ph.D. research.

www.manaraa.com

9

CHAPTER 2. Scheduling in Single-channel Wireless Cellular Networks

In this chapter, I present the scheduling algorithm for wireless single-channel system with

flow-level dynamics, which will be extended to the multi-channel case in Chapter 3. We assume

the network contains both long-lived flows, which keep injecting bits into the network, and

short-lived flows, which have a finite number of bits to transmit. A short-lived flow joins the

network to download some packets, and leaves the system when all its packets are transmitted.

The terminology of long-lived and short-lived flows above has to be interpreted carefully

in practical situations. In practice, each flow has a finite size and thus, all flows eventually

will leave the system if they receive sufficient service. Thus, all flows are short-lived flows

in reality. Our results suggest that transmitting to users who are individually in their best

estimated channel state so far is thus, throughput optimal. On the other hand, it is also well

known that real network traffic consists of many flows with only a few packets and a few

flows with a huge number of packets. If one considers the time scales required to serve the

small-sized flows, the large-sized flows will appear to be long-lived (i.e., persistent forever) in

the terminology above. Thus, if one is interested in performance over short time-scales, an

algorithm which considers flows with a very large number of packets as being long-lived may

lead to better performance and hence, we consider the more general model which consists of

both short-lived flows and long-lived flows. Our simulations in Section 2.6 confirm the fact

that the algorithm which treats some flows are being long-lived leads to better performance

although through-optimality does not require such a model. In addition, long-lived flows

partially capture the scenario where all bits from a flow do not arrive at the base station all

at once.

www.manaraa.com

10

2.1 Basic Model

Network Model: We consider a discrete-time wireless downlink network with a single

base station and many flows, each flow associates with a distinct mobile user. The base station

can serve only one flow at a time.

Traffic Model: The network consists of the following two types of flows:

• Long-lived flows: Long-lived flows are traffic streams that are always in the network

and continually generate bits to be transmitted.

• Short-lived flows: Short-lived flows are flows that have a finite number of bits to

transmit. A short-lived flow enters the network at a certain time, and leaves the system

after all bits are transmitted.

We assume that the set of long-lived flows is fixed, and short-lived flows arrive and depart.

We let l be the index for long-lived flows, L be the set of long-lived flows, and L be the

number of long-lived flows, i.e., L = |L|. Furthermore, we let Xl(t) be the number of new

bits injected by long-lived flow l in time slot t, where Xl(t) is a discrete random variable with

finite support, and independently and identically distributed (i.i.d.) across time slots. We also

assume E[Xl(t)] = xl and Xl(t) ≤ Xmax for all l and t.

Similarly, we let i be the index for short-lived flows, I(t) be the set of short-lived flows in

the network at time t, and I(t) be the number of short-lived flows at time t, i.e., I(t) = |I(t)|.

We denote by fi the size (total number of bits) of short-lived flow i, and assume fi ≤ Fmax for

all i.

It is important to note that we allow different short-lived flows to have different maximum

link rates. A careful consideration of our proofs will show the reader that the learning algorithm

is not necessary if all users have the same maximum rate and that one can simply transmit to

the user with the best channel state if it is assumed that all users have the same maximum

rate. However, we do not believe that this is a very realistic scenario since SNR variations will

dictate different maximum rates for different users.

www.manaraa.com

11

Residual Size and Queue Length: For a short-lived flow i, let Qi(t), which we call the

residual size, denote the number of bits still remaining in the system at time t. For a long-lived

flow l, let Ql(t) denote the number of bits stored at the queue at the base station.

Channel Model: There is a wireless link between each user and the base station. Denote

by Ri(t) the state of the link between short-lived flow i and the base station at time t (i.e.,

the maximum rate at which the base station can transmit to short-lived flow i at time t), and

Rl(t) the state of the link between long-lived flow l and the base station at time t. We assume

that Ri(t) and Rl(t) are discrete random variables with finite support. Define Rmax
i and Rmax

l

to be the largest values that these random variables can take, i.e., Pr(Rj(t) > Rmax
j) = 0 for

each j ∈ L
∪

(
∪

t I(t)) . Choose pmax
s > 0 and Rmax > 0 such that

Pr(Ri(t) = Rmax
i) ≥ pmax

s ∀i, t

max {maxiR
max
i ,maxl R

max
l } ≤ Rmax.

The states of wireless links are assumed to be independent across flows and time slots (but

not necessarily identically distributed across flows). The independence assumption across time

slots can be relaxed easily but at the cost of more complicated proofs.

2.2 Workload-based Scheduling with Learning

In this section, we introduce a new scheduling algorithm called Workload-based Scheduling

with Learning (WSL).

Workload-based Scheduling with Learning: For a short-lived flow i, we define

R̃max
i (t) = max

max{t−D,bi}≤s≤t
Ri(s),

where bi is the time short-lived flow i joins the network and D > 0 is called the learning period.

A key component of this algorithm is to use Rmax
i to evaluate the workload of short-lived flows

(the reason will be explained in a detail in Section 2.4). However, Rmax
i is in general unknown,

so the scheduling algorithm uses R̃max
i (t) as an estimate of Rmax

i .

www.manaraa.com

12

During each time slot, the base station first checks the following inequality:

α
∑
i∈I(t)

⌈
Qi(t)

R̃max
i (t)

⌉
> max

l∈L
Ql(t)Rl(t), (2.1)

where α > 0.

• If inequality (2.1) holds, then the base station serves a short-lived flow as follows: if at least

one short-lived flow (say flow i) satisfies Ri(t) ≥ Qi(t) or Ri(t) = R̃max
i (t), then the base

station selects such a flow for transmission (ties are broken according to a good tie-breaking

rule, which is defined at the end of this algorithm); otherwise, the base station picks an

arbitrary short-lived flow to serve.

• If inequality (2.1) does not hold, then the base station serves a long-lived flow l∗ such that

l∗ ∈ argmax
l∈L

Ql(t)Rl(t)

(ties are broken arbitrarily).

“Good” tie-breaking rule: Assume that the tie-breaking rule is applied to pick a short-

lived flow every time slot (but the flow is served only if α
∑

i∈I(t)

⌈
Qi(t)

R̃max
i (t)

⌉
> maxl∈LQl(t)Rl(t)).

We define Emiss(t) to be the event that the tie-breaking rule selects a short-lived flow with

R̃max
i (t) ̸= Rmax

i . Define

Ws(t) =
∑
i∈I(t)

⌈
Qi(t)

Rmax
i

⌉
,

which is the total workload of the system at time t. A tie-breaking rule is said to be good if

the following condition holds: Consider the WSL with the given tie-breaking rule and learning

period D. Given any ϵmiss > 0, there exist Nϵmiss and Dϵmiss such that

Pr (Emiss(t)) ≤ ϵmiss

ifD ≥ Dϵmiss andWs(t−D) ≥ Nϵmiss . �

Remark 1: While all WSL scheduling algorithms with good tie-breaking rules are through-

put optimal, their performances in terms of other metrics could be different depending upon

the tie-breaking rules. We consider two tie-breaking rules in this chapter:

www.manaraa.com

13

• Uniform Tie-breaking: Among all short-lived flows satisfying Ri(t) = R̃max
i (t) or

Ri(t) ≥ Qi(t), the base-station uniformly and randomly selects one to serve.

• Oldest-first Tie-breaking: Let βi denote the number of time slots a short-lived flow

has been in the network. The base station keeps track τi = min{τ̄ , βi} for every short-

lived flow, where τ̄ is some fixed positive integer. Among all short-lived flows satisfying

Ri(t) = R̃max
i (t) or Ri(t) ≥ Qi(t), the tie-breaking rule selects the one with the largest

τi, and the ties are broken uniformly and randomly.1

The “goodness” of these two tie-breaking rules are proved in Appendix C and D of our technical

report [16], and the impact of the tie-breaking rules on performance is studied in Section 2.6

using simulations.

Remark 2: The α in inequality (2.1) is a parameter balancing the performance of long-lived

flows and short-lived flows. A large α leads to a small number of short-lived flows but large

queue-lengths of long-lived flows, and vice versa.

Remark 3: In Theorem 3, we will prove that WSL is throughput optimal when D is

sufficiently large. From purely throughput-optimality considerations, it is then natural to

choose D = ∞. However, in practical systems, if we choose D too large, such as ∞, then it is

possible that a flow may stay in the system for a very long time if its best channel condition

occurs extremely rarely. Thus, it is perhaps best to choose a finite D to tradeoff between

performance and throughput.

Remark 4: If all flows are short-lived, then the algorithm simplifies as follows: If at least

one short-lived flow (say flow i) satisfies Ri(t) ≥ Qi(t) or Ri(t) = R̃max
i (t), then the base station

selects such a flow for transmission according to a “good” tie-breaking rule; otherwise, the base

station picks an arbitrary short-lived flow to serve. Simply stated, the algorithm serves one of

the flows which can be completely transmitted or sees its best channel state, where the best

channel state is an estimate based on past observations. If no such flow exists, any flow can

be served. We do not separately prove the throughput optimality of this scenario since it is

1We set a upper bound τ̄ on β for technical reasons that facilitate the throughput-optimality proof. Since τ̄
can be arbitrarily large, we conjecture that this upper bound is only for analysis purpose, and not required in
practical systems.

www.manaraa.com

14

a special case of the scenario considered here. But it is useful to note that, in the case of

short-lived flows only, the algorithm does not consider backlogs at all in making scheduling

decisions.

We will prove that WSL (with any α > 0) is throughput-optimal in the following sections,

i.e., the scheduling policy can support any set of traffic flows that are supportable by any other

algorithm. In the next section, we first present the necessary conditions for the stability, which

also define the network throughput region.

2.3 Necessary Conditions for Stability

In this section, we establish the necessary conditions for the stability of networks with

flow-level dynamics. To get the necessary condition, we need to classify the short-lived flows

into different classes.

• A short-lived flow class is defined by a pair of random variables (R̂, F̂). Class-k is associated

with random variables R̂k and F̂k.
2 A short-lived flow i belongs to class k if Ri(t) has the

same distribution as R̂k and the size of flow i (fi) is a realization of F̂k. We let Λk(t) denote

the number of class-k flows joining the network at time t, where Λk(t) are i.i.d. across time

slots and independent but not necessarily identical across classes, and E[Λk(t)] = λk. Denote

by K the set of distinct classes. We assume that K is finite, |K| = K, and Λk[t] ≤ λmax for

all t and k ∈ K.

• Let c denote an L-dimensional vector describing the state of the channels of the long-lived

flows. In state c, Rc,l is the service rate that long-lived flow l can receive if it is scheduled.

We denote by C the set of all possible states.

• Let C(t) denote the state of the long-lived flows at time t, and πc denote the probability

that C(t) is in state c.

2We use ˆ to indicate that the notation is associated with a class of short-lived flows instead of an individual
short-lived flow.

www.manaraa.com

15

• Let pc,l be the probability that the base station serves flow l when the network is in state c.

Clearly, for any c, we have ∑
l∈L

pc,l ≤ 1.

Note that the sum could be less than 1 if the base station schedules a short-lived flow in this

state.

• Let µc,s be the probability that the base station serves a short-lived flow when the network

is in state c.

• Let Θk,β(t) denote the number of short-lived flows that belong to class-k and have residual

size Q(t) = β. Note that β can only take on a finite number of values.

Theorem 1. Consider traffic parameters {xl} and {λk}, and suppose that there exists a

scheduling policy guaranteeing

lim
t→∞

E

∑
l∈L

Ql(t) +
∑
k∈K

Fmax∑
β=1

Θk,β(t)

 < ∞.

Then there exist pc,l and µc,s such that the following inequalities hold:

xl ≤
∑
c∈C

πcpc,lRc,l ∀l ∈ L. (2.2)

∑
k∈K

λkE

[⌈
F̂k

R̂max
k

⌉]
≤
∑
c∈C

µc,sπc. (2.3)(∑
l∈L

pc,l

)
+ µc,s ≤ 1 ∀c ∈ C. (2.4)

�

Inequality (2.2) and (2.3) state that the service allocated should be no less than the user

requests if the flows are supportable. Inequality (2.4) states that the overall time used to

serve long-lived and short-lived flows should be no more than the time available. To prove

this theorem, it can be shown that for any traffic for which we cannot find pc,l and µc,s

satisfying the three inequalities in the theorem, a Lyapunov function can be constructed such

www.manaraa.com

16

that the expected drift of the Lyapunov function is larger than some positive constant under

any scheduling algorithm, which implies the instability of the network. The complete proof

is based on the Strict Separation Theorem and is along the lines of a similar proof in [5], and

is omitted in this chapter.

2.4 Throughput Optimality of WSL

First, we provide some intuition into how one can derive the WSL algorithm from opti-

mization decomposition considerations. Then, we will present our main throughput optimality

results. Given traffic parameters {xl} and {λk}, the necessary conditions for the supportability

of the traffic is equivalent to the feasibility of the following constraints:

xl ≤
∑

c∈C πcpc,lRc,l ∀l∑
k∈K λkE

[⌈
F̂k

R̂max
k

⌉]
≤
∑

c∈C µc,sπc (2.5)∑
l∈L pc,l + µc,s ≤ 1 ∀c.

For convenience, we view the feasibility problem as an optimization problem with the objective

maxA, where A is some constant. While we have not explicitly stated that the x’s and µ’s are

non-negative, this is assumed throughout.

Partially augmenting the objective using Lagrange multipliers, we get

maxA−
∑

l∈L ql(xl −
∑

c πcpc,lRc,l)−

qs

(∑
k∈K λkE

[⌈
F̂k

R̂max
k

⌉]
−
∑

c∈C µc,sπc

)
s.t.

∑
l∈L pc,l + µc,s ≤ 1 ∀c.

For the moment, let us assume Lagrange multipliers ql and qs are given. Then the maximization

problem above can be decomposed into a collection of optimization problems, one for each c :

max
pc,l,µc,s

∑
l∈L

qlRc,lpc,l + qsµc,s

s.t.
∑

l∈L pc,l + µc,s ≤ 1.

It is easy to verify that one optimal solution to the optimization problem above is:

www.manaraa.com

17

• if qs > maxl∈L qlRc,l, then µc,s = 1 and pc,l = 0(∀l);

• otherwise, µc,s = 0, and pc,l∗ = 1 for some l∗ ∈ argmax qlRc,l and pc,l = 0 for other l.

The complementary slackness conditions give

ql

(
xl −

∑
c∈C

πcpc,lRc,l

)
= 0.

Since xl is the mean arrival rate of long-lived flow l and
∑

c∈C πcpc,lRc,l is the mean service

rate, the condition on ql says that if the mean arrival rate is less than the mean service

rate, ql is equal to zero. Along with the non-negativity condition on ql, this suggests that

perhaps ql behaves likes a queue with these arrival and service rates. Indeed, it turns out

that the mean of the queue lengths are proportional to Lagrange multipliers (see the surveys

in [9–11]). For long-lived flow l, we can treat the queue-length Ql(t) as a time-varying estimate

of Lagrange multiplier ql. Similarly qs can be associated with a queue whose arrival rate is∑
k∈K λkE

[⌈
F̂k

R̂max
k

⌉]
, which is the mean rate at which workload arrives where workload is

measured by the number of slots needed to serve a short-lived flow if it is served when its

channel condition is the best. The service rate is
∑

c∈C µc,sπc which is the rate at which the

workload can potentially decrease when a short-lived flow is picked for scheduling by the base

station. Thus, the workload in the system can serve as a dynamic estimate of qs.

Letting αWs(t) (α > 0) be an estimate of qs, the observations above suggest the following

workload-based scheduling algorithm if Rmax
i are known.

Workload-based Scheduling (WS): During each time slot, the base station checks the

following inequality:

αWs(t) > max
l∈L

Ql(t)Rl(t). (2.6)

• If inequality (2.6) holds, then the base station serves a short-lived flow as follows: if at least

one short-lived flow (say flow i) satisfies Ri(t) ≥ Qi(t) or Ri(t) = Rmax
i , then such a flow is

selected for transmission (ties are broken arbitrarily); otherwise, the base station picks an

arbitrary short-lived flow to serve.

www.manaraa.com

18

• If inequality (2.6) does not hold, then the base station serves a long-lived flow l∗ such that

l∗ ∈ argmaxl∈LQl(t)Rl(t) (ties are broken arbitrarily).

• The factor α can be obtained from the optimization formulation by multiplying constraint

(2.5) by α on both sides

�

However, this algorithm which was directly derived from dual decomposition considerations

is not implementable since Rmax
i ’s are unknown. So WSL uses R̃max

i (t) to approximate Rmax
i .

Note that an inaccurate estimate of Rmax
i not only affects the base station’s decision on whether

Ri(t) = Rmax
i , but also on its computation of

⌈
Qi(t)
Rmax

i

⌉
. However, it is not difficult to see that

the error in the estimate of the total workload is a small fraction of the total workload when

the total workload is large: when the workload is very large, the total number of short-lived

flows is large since their file sizes are bounded. Since the arrival rate of short-lived flows is also

bounded, this further implies that the majority of short-lived flows must have arrived a long

time ago which means that with high probability, their estimate of their best channel condition

must be correct.

Next we will prove that both WS and WSL can stabilize any traffic xl and λk such that

(1 + ϵ)xl and (1 + ϵ)λk are supportable, i.e., satisfying the conditions presented in Theorem 1.

In other words, the number of short-lived flows in the network and the queues for long-lived

flows are all bounded. Even though WS is not practical, we study it first since the proof of its

throughput optimality is easier and provides insight into the proof of throughput-optimality

of WSL.

Let

M(t) = ({Ql(t)}l∈L, {Θk,β(t)}k∈K,1≤β≤Fmax) .

Since the base station makes decisions on M(t) and R(t) = {{Ri(t)}i∈I(t), {Rl(t)}l∈L} under

WS. It is easy to verify that M(t) is a finite-dimensional Markov chain under WS. Assume

that Λk(t), F̂k and Xl(t) are such that the Markov chain M is irreducible and aperiodic.

Theorem 2. Given any traffic xl and λk such that (1 + ϵ)xl and (1 + ϵ)λk are supportable,

www.manaraa.com

19

the Markov chain M(t) is positive-recurrent under WS, and

lim
t→∞

E

∑
l∈L

Ql(t) +
∑
i∈I(t)

Qi(t)

 < ∞.

Proof. We consider the following Lyapunov function:

V (t) = α (Ws(t))
2 +

∑
l∈L

(Ql(t))
2, (2.7)

and prove that

E[V (t+ 1)− V (t)|M(t)] ≤ Ud1M(t)∈Υ − ϵ

2

[
αλ̄Ws(t)

+
∑
l∈L

Ql(t)xl

]
1M(t)̸∈Υ

for some Ud > 0, ϵ > 0, λ̄ > 0, and a finite set Υ. Positive recurrence of M then follows from

Foster’s Criterion for Markov chains [12], and the boundedness of the first moment follows

from [13]. The detailed proof is presented in Section 2.5.

We next study WSL, where Rmax
i is estimated from the history. We define Θk,β,r(t) to

be the number of short-lived flows that belong to class-k, have a residual size of β, and have

R̃max
i (t) = r. Furthermore, we define

M̃(n) =

{Ql(t)}l∈L, {Θk,β,r(t)} k∈K
1≤β≤Fmax

1≤r≤R̂max
k


(n−1)T+1≤t≤nT

from some T ≥ D. It is easy to see that M̃(n) is a finite-dimensional Markov chain under

WSL.3

Theorem 3. Consider traffic xl and λk such that (1 + ϵ)xl and (1 + ϵ)λk are supportable.

Given WSL with a good tie-breaking rule, there exists Dϵ such that the Markov chain M̃(n)

3This Markov chain is well-defined under the uniform tie-breaking rule. For other good tie-breaking rules,
we may need to first slightly change the definition of M̃(n) to include the information required for tie-breaking,
and then use the analysis in Section 2.5 to prove the positive recurrence.

www.manaraa.com

20

is positive-recurrent under the WSL with learning period D ≥ Dϵ and the given tie-breaking

rule. Further,

lim
t→∞

E

∑
l∈L

Ql(t) +
∑
i∈I(t)

Qi(t)

 < ∞.

Proof. The proof of this theorem is built upon the following two facts:

• When the number of short-lived flows is large, the majority of short-lived flows must have

been in the network for a long time and have obtained the correct estimate of the best

channel condition, which implies that

∑
i∈I(t)

⌈
Qi(t)

Rmax
i

⌉
≈
∑
i∈I(t)

⌈
Qi(t)

R̃max
i (t)

⌉
.

• When the number of short-lived flows is large, the short-lived flow selected by the base

station (say flow i) has a high probability to satisfy Ri(t) = Rmax
i or Ri(t) ≥ Qi(t).

From these two facts, we can prove that with a high probability, the scheduling decisions

of WSL are the same as those of WS, which leads to the throughput optimality of WSL. The

detailed proof is presented in Section 2.5.

2.5 Proofs

2.5.1 Proof of Theorem 2

Recall that Ws(t) =
∑

i∈I(t)

⌈
Qi(t)
Rmax

i

⌉
. We define R̂max

k to be the largest achievable link

rate of class-k short-lived flows, and As(t) =
∑

k∈K
∑Λk(t)

i=1

⌈
fi

R̂max
k

⌉
, which is the amount of

new workload (from short-lived flows) injected in the network at time t, and µs(t) to be the

decrease of the workload at time t, i.e., µs(t) = 1 if the workload of short-lived flows is reduced

by one and µs(t) = 0 otherwise. Based on the notations above, the evolution of short-lived

flows can be described as:

Ws(t+ 1) = Ws(t) +As(t)− µs(t).

www.manaraa.com

21

Further, the evolution of Ql(t) can be described as

Ql(t+ 1) = Ql(t) +Xl(t)− µl(t) + ul(t),

where µl(t) is the decrease of Ql(t) due to the service long-lived flow l receives at time t, and

ul(t) is the unused service due to the lack of data in the queue.

We consider the following Lyapunov function

V (t) = α (Ws(t))
2 +

∑
l∈L

(Ql(t))
2. (2.8)

We will prove that the drift of the Lyapunov function satisfies

E[V (t+ 1)− V (t)|M(t)] ≤ Ud1M(t)∈Υ − ϵ

2

[
αλ̄Ws(t)

+
∑
l∈L

Ql(t)xl

]
1M(t)̸∈Υ

for some Ud > 0, λ̄ > 0 and a finite set Υ (the values of these parameters will be defined in the

following analysis). Positive recurrence of M then follows from Foster’s Criterion for Markov

chains [12].

First, since the number of arrivals, the sizes of short-lived flows and channel rates are all

bounded, it can be verified that there exists U, independent of M(t), such that

E[V (t+ 1)− V (t)|M(t)]

=E
[
α (Ws(t+ 1))2 − α (Ws(t))

2+∑
l∈L

(Ql(t+ 1))2 −
∑
l∈L

(Ql(t))
2

∣∣∣∣∣M(t)

]

≤U + 2αWs(t)E [As(t)− µs(t)|M(t)]+

2
∑
l∈L

Ql(t)E [Xl(t)− µl(t)|M(t)]

≤U + 2αWs(t)

((∑
k∈K

λkE

[⌈
F̂k

R̂max
k

⌉])

−E [µs(t)|M(t)]
)

+ 2
∑
l∈L

Ql(t) (xl −E [µl(t)|M(t)]) .

www.manaraa.com

22

Recall that we assume that (1 + ϵ)xl and (1 + ϵ)λk satisfy the supportability conditions of

Theorem 1. By adding and subtracting corresponding pc,lRc,l and µc,s, we obtain that

E[V (t+ 1)− V (t)|M(t)]− U

≤ 2αWs(t)E [E [µc,s − µs(t)|C(t) = c]|M(t)]

+2
∑
l∈L

Ql(t)E [E [pc,lRc,l − µl(t)|C(t) = c]|M(t)]

−2ϵαWs(t)λ̄− 2ϵ
∑
l∈L

Ql(t)xl,

where

λ̄ =

(∑
k∈K

λkE

[⌈
F̂k

R̂max
k

⌉])
.

Next we assume C(t) = c and analyze the following quantity

αWs(t) (µc,s − µs(t)) +
∑
l∈L

Ql(t) (pc,lRc,l − µl(t)) . (2.9)

We have the following facts:

• Fact 1: Assume that there exists a short-lived flow i such that Ri(t) = Rmax
i or Ri(t) ≥

Qi(t). If a short-lived flow is selected to be served, then the workload of the selected flow

is reduced by one and µs(t) = 1. If long-lived flow l is selected, the rate flow l receives is

Rc,l. Thus, we have that

αWs(t)µs(t) +
∑
l∈L

Ql(t)µl(t)

= max {αWs(t),maxl Ql(t)Rc,l}

≥ αWs(t)µc,s +
∑
l∈L

Ql(t)pc,lRc,l,

where the last inequality holds because
∑

l pc,l + µc,s ≤ 1. Therefore, we have (2.9) ≤ 0

in this case.

• Fact 2: Assume that there does not exist a short-lived flow i such that Ri(t) = Rmax
i or

Ri(t) ≥ Qi(t). In this case, we have

(2.9) ≤ αWs(t) + max
l∈L

Ql(t)Rc,l

≤ αWs(t) +Rmaxmax
l∈L

Ql(t).

www.manaraa.com

23

�

Now we define a set Υ such that

Υ = {M : Ws ≤ UW and Ql ≤ UQ ∀l} ,

where UW is a positive integer satisfying that

(1− pmax
s)

UW
Fmax ≤ ϵ

2 min
{
λ̄, minl∈L xl

Rmax

}
, ϵ1 (2.10)

UW ≥ 2U
ϵαλ̄

, (2.11)

and UQ is a positive integer satisfying

UQ ≥ 4αUW + U

ϵminl∈L xl
. (2.12)

We next compute the drift of the Lyapunov function according to the value of M(t).

• Case I: Assume M(t) ∈ Υ. According to the definition of Υ, we have

E[V (t+ 1)− V (t)|M(t)] ≤ U + 2αUW + 2RmaxLUQ.

• Case II: Assume Ws(t) > UW . Since the size of a short-lived flow is upper bounded

by Fmax, Ws(t) > UW implies that at least UW
Fmax short-lived flows are in the network at

time t. Define S(t) to be the following event: no short-lived flow satisfies Ri(t) = Rmax
i

or Ri(t) ≥ Qi(t).

Recall that

min
i

Pr(Ri(t) = Rmax
i) ≥ pmax

s .

Given at least UW
Fmax short-lived flows are in the network, we have that

Pr(1S(t) = 1) ≤ (1− pmax
s)

UW
Fmax ≤ ϵ1.

According to facts 1 and 2, (2.9) is positive only if S(t) occurs and the value of (2.9) is

bounded by αWs(t) + Rmaxmaxl∈LQl(t). Therefore, we can conclude that in this case

www.manaraa.com

24

(Case II),

E[V (t+ 1)− V (t)|M(t)]

≤ U + 2ϵ1

(
αWs(t) +Rmaxmax

l∈L
Ql(t)

)
−2ϵαWs(t)λ̄− 2ϵ

∑
l∈L

Ql(t)xl

≤ U − ϵαWs(t)λ̄− ϵ
∑
l∈L

Ql(t)xl (2.13)

≤ − ϵ

2

[
αλ̄Ws(t) +

∑
l∈L

Ql(t)xl

]
(2.14)

where inequality (2.13) holds due to the definition of ϵ1 (2.10), and inequality (2.14)

holds due to inequality (2.11).

• Case III: Assume that Ws(t) ≤ UW and Ql(t) > UQ for some l. In this case, if a

long-lived flow is selected for a given c, we have

(2.9) ≤ αWs(t)µc,s ≤ αWs(t).

Otherwise, if a short-lived flow is selected, it means for the given c, we have maxl Ql(t)Rc,l ≤

αWs(t), and

(2.9) ≤ 2αWs(t).

Therefore, we can conclude that in this case,

E[V (t+ 1)− V (t)|M(t)]

≤U + 4αWs(t)− 2ϵαWs(t)λ̄− 2ϵ
∑
l∈L

Ql(t)xl (2.15)

≤U + 4αUW − 2ϵαWs(t)λ̄− 2ϵ
∑
l∈L

Ql(t)xl

≤− ϵ

2

[
αλ̄Ws(t) +

∑
l∈L

Ql(t)xl

]
(2.16)

where the last inequality yields from the definition of UQ (2.12).

www.manaraa.com

25

From the analysis above, we can conclude that

E[V (t+ 1)− V (t)|M(t)] ≤ Ud1M(t)∈Υ − ϵ

2

[
αλ̄Ws(t)

+
∑
l∈L

Ql(t)xl

]
1M(t)̸∈Υ,

where Ud = U + 2αUW + 2RmaxLUQ and Υ is a set with a finite number of elements. Since

V (t) ≥ 0 for all t, the Lyapunov function is always lower bounded. Further the drift of the

Lyapunov is upper bounded when M(t) belongs to a finite set Υ, and is negative otherwise. So

invoking Foster’s criterion, the Markov chain M(t) is positive recurrent and the boundedness

of the first moment follows from [13].

2.5.2 Proof of Theorem 3

Consider the network that is operated under WSL, and define H(t) to be

H(t) ,
{
Ql(t), Rl(t), Qi(t), Ri(t), R̃

max
i (t)

}
.

Now given H(t), we define the following notations:

• Define µ2;l(t) = Rl(t) if flow l is selected by WSL, and µ2;l(t) = 0 otherwise.

• Define µ2;i(t) = 1 if flow i is selected by WSL and the workload of flow i can be reduced

by one, and µ2;i(t) = 0 otherwise.

• Define µ1;l(t) = Rl(t) if flow l is selected by WS, and µ1;l(t) = 0 otherwise.

• Define µ1;i(t) = 1 if flow i is selected by WS and the workload of flow i can be reduced

by one, and µ1;i(t) = 0 otherwise.

We remark that µ2;j(t) is the action selected by the base station at time t under WSL and

µ1;j(t) is the action selected by the base station at time t under WS, assuming the same history

H(t).

We define the Lyapunov function to be

V (n) = α (Ws(nT))
2 +

∑
l∈L

(Ql(nT))
2. (2.17)

www.manaraa.com

26

This Lyapunov function is similar to the one used in the proof of Theorem 2, and we will show

that this is a valid Lyapunov function for workload-based scheduling with learning. Then, it

is easy to verify that there exists U1 independent of M̃(n) such that

E[V (n+ 1)− V (n)|M̃(n)]

<U1 + 2αE

Ws(nT)

(n+1)T−1∑
t=nT

(As(t)− µ2;s(t))

∣∣∣∣∣∣ M̃(n)


+
∑
l∈L

2E

Ql(nT)

(n+1)T−1∑
t=nT

(Xl(t)− µ2;l(t))

∣∣∣∣∣∣ M̃(n)

 .

Dividing the time into two segments [nT, nT +D − 1] and [nT +D, (n+ 1)T − 1], we obtain

E[V (n+ 1)− V (n)|M̃(n)]

<U1 + 2αWs(nT)λ̄D + 2
∑
l∈L

Ql(nT)xlD

+ 2αE

Ws(nT)

(n+1)T−1∑
t=nT+D

(As(t)− µ2;s(t))

∣∣∣∣∣∣ M̃(n)


+
∑
l∈L

2E

Ql(nT)

(n+1)T−1∑
t=nT+D

(Xl(t)− µ2;l(t))

∣∣∣∣∣∣ M̃(n)

 .

Note that |Ql(t1) − Ql(t2)| and |Wk(t1) − Wk(t2)| are both bounded by some constants

independent of M̃(n), so there exists Ũ such that

E[V (n+ 1)− V (n)|M̃(n)]

<Ũ + 2αWs(nT)λ̄D + 2
∑
l∈L

Ql(nT)xlD

+ 2E

α (n+1)T−1∑
t=nT+D

Ws(t) (As(t)− µ2;s(t))

∣∣∣∣∣∣ M̃(n)


+
∑
l∈L

2E

 (n+1)T−1∑
t=nT+D

Ql(t) (Xl(t)− µ2;l(t))

∣∣∣∣∣∣ M̃(n)

 .

Now, by adding and subtracting µ1;·(t), we obtain

E[V (n+ 1)− V (n)|M̃(n)]

≤Ũ + 2αWs(nT)λ̄D + 2
∑
l∈L

Ql(nT)xlD +

(n+1)T−1∑
t=nT+D

Drift(t),

www.manaraa.com

27

where

Drift(t)

=2E

[
αWs(t)As(t) +

∑
l∈L

Ql(t)Xl(t)

∣∣∣∣∣ M̃(n)

]
(2.18)

− 2E[αWs(t)µ1;s(t) +
∑
l∈L

Ql(t)µ1;l(t)|M̃(n)] (2.19)

+
∑
l∈L

2E[Ql(t) (µ1;l(t)− µ2;l(t)) |M̃(n)] (2.20)

+ 2E
[
αWs(t) (µ1;s(t)− µ2;s(t)) |M̃(n)

]
. (2.21)

Note that (2.20)+(2.21) is the difference between WS and WSL. In the following analysis,

we will prove that this difference is small compared to the absolute value of (2.18)+(2.19).

We define

Diff(t) =αWs(t) (µ1;s(t)− µ2;s(t))

+
∑
l∈L

Ql(t) (µ1;l(t)− µ2;l(t)) ,

and

W̃s(t) =
∑
i∈I(t)

⌈
Qi(t)

R̃max
i (t)

⌉
.

Next, we compute its value in three different situations:

• Situ-A: Consider the situation in which αW̃s(t) ≤ maxl∈LQl(t)Rl(t). We note that

W̃s(t) ≥ Ws(t) since R̃max
i (t) ≤ Rmax

i for all t and i. Therefore, given αW̃s(t) ≤∑
l∈LQl(t), both WS and WSL will select a long-lived flow. In this case, we can conclude

that

µ1;l(t) = µ2;l(t) and µ1;s(t) = µ2;s(t) = 0,

and Diff(t) = 0.

• Situ-B: Consider the situation in which αWs(t) > maxl∈LQl(t)Rl(t). In this case, both

WS and WSL will select a short-lived flow, which implies that

µ1;l(t) = µ2;l(t) = 0,

www.manaraa.com

28

and

Diff(t) =αWs(t) (µ1;s(t)− µ2;s(t))

≤ αWs(t) (1− µ2;s(t)) .

• Situ-C: Consider the situation in which αW̃s(t) > maxl∈LQl(t)Rl(t) ≥ αWs(t). In this

case, WS will select a long-lived flow and WSL will select a short-lived flow. We hence

have

µ1;l(t) > 0 and µ1;s(t) = µ2;l(t) = 0,

and

Diff(t) = max
l∈L

Ql(t)Rl(t)− αWs(t)µ2;s(t)

≤ αW̃s(t)− αWs(t)µ2;s(t)

�

According to the analysis above, we have that

E[Diff(t)|M̃(n)]

≤E
[
αWs(t)|Situ-B, µ2;s = 0, M̃(n)

]
×

Pr
(
Situ-B, µ2;s = 0|M̃(n)

)
+E

[
αW̃s(t)|Situ-C, µ2;s = 0, M̃(n)

]
×

Pr
(
Situ-C, µ2;s = 0|M̃(n)

)
+E

[
αW̃s(t)− αWs(t)|Situ-C, µ2;s = 1, M̃(n)

]
×

Pr
(
Situ-C, µ2;s = 1|M̃(n)

)
.

Next we define a finite set Υ̃. We first introduce some constants:

• ϵ1 = min
{

λ̄ϵ
32 ,

ϵminl xl
8Rmax

}
.

• ϵ2 = λ̄ϵ
32Rmax , and Dϵ2 and Nϵ2 are the numbers that guarantee Pr (Emiss(t)) ≤ ϵ2, which

are defined by the goodness of the tie-breaking rule.

www.manaraa.com

29

• λmax
W = KλmaxFmax, which is the maximum number of bits of short-lived flows injected

in one time slot, and also the upper bound on the new workload injected in the network

in one time slot.

We define a set Υ̃ such that

Υ̃ =

{
M̃(n) :

Ws(nT)≤ŨW+2T+
2
∑

l xlR
maxT

αλ̄

Ql(nT)≤ŨQ+ 2αλ̄T
minl xl

+
2TRmax ∑

l xl
minl xl

∀l

}
.

In this definition, ŨW is a positive integer satisfying that

(1− pmax
s)

ŨW
Fmax ≤ ϵ1, (2.22)

ŨW ≥
8Ũ

T−D
+16ϵ2αλmax

W T+8αDRmax+16ϵ2αRmaxT+8λmax
W D

ϵαλ̄
(2.23)

ŨW
Fmax ≥ Nϵ2 , (2.24)

and ŨQ is a positive integer satisfying

ŨQ ≥ 8Ũ+12αRmax(ŨW+
2
∑

l xlR
maxT

αλ̄
+(λmax

W +2)T)

ϵminl xl
. (2.25)

Since the changes of Ws(t) and Ql(t) during each time slot is bounded by some constants

independent of M̃(n), it is easy to verify that Υ̃ is a set of a finite number of elements.

Next, we analyze the drift of Lyapunov function case by case assuming that

D >

⌈
log λ̄ϵ− log 16− logRmax

log(1− pmax
s)

⌉
(2.26)

and T >
⌈
(4+ϵ)D

ϵ

⌉
.

• Case I: Assume that M̃(n) ∈ Υ̃. In this case, it is easy to verify that E[V (n+1)−V (n)|M̃(n)]

is bounded by some constant Ũd.

• Case II: Assume that

Ws(nT) > ŨW + 2T +
2
∑

l xlR
maxT

αλ̄
≥ ŨW + T.

Recall that Emiss(t) is the event such that the tie-breaking rule selects a short-lived flow with

R̃max
i (t) ̸= Rmax

i . Note that µ2;s(t) = 0 implies that Emiss(t) occurs. Also note the following

facts:

www.manaraa.com

30

- For any nT ≤ t ≤ (n+ 1)T, we have W (t) ≤ W (nT) + λmax
W T,

- Given Ws(nT) ≥ ŨW + T, we have Ws(t) ≥ ŨW for all nT ≤ t ≤ (n + 1)T − 1. Then

according to the definition of ϵ2 and ŨW and assumption that the tie-breaking rule is

good, we have

Pr (Emiss(t)) ≤ ϵ2

for all nT +D ≤ t ≤ (n+ 1)T − 1.

- Given any M̃(n) and any nT +D ≤ t ≤ (n+ 1)T − 1, we have

E
[
αW̃s(t)− αWs(t)|Situ-C, µ2;s = 1, M̃(n)

]
×

Pr
(
Situ-C, µ2;s = 1|M̃(n)

)
≤E

[
αW̃s(t)− αWs(t)|M̃(n)

]
=E

[
E
[
αW̃s(t)− αWs(t)

∣∣∣Ws(t−D)|
]∣∣∣ M̃(n)

]
≤E

[
α(1− pmax

s)DWs(t−D)Rmax + αλmax
W D|M̃(n)

]
(2.27)

≤E
[
α(1− pmax

s)D(Ws(t) +D)Rmax + αλmax
W D|M̃(n)

]
,

where the inequality (2.27) holds because at most λmax
W D bits belonging to short-lived

flows are in the network for less than D time slots at time t, and a flow having been

in the network for at least D time slots can estimate correctly its workload with a

probability at least 1− (1− pmax
s)D.

Now according to the observations above, we can obtain that

E[Diff(t)|M̃(n)]

≤ϵ2α (Ws(nT) + λmax
W T) + ϵ2α (RmaxWs(nT) + λmax

W T)

+E
[
α(1− pmax

s)D(Ws(t) +D)Rmax + αλmax
W D|M̃(n)

]
.

www.manaraa.com

31

Combining with the analysis leading to (2.13) in the proof of Theorem 2, we conclude that

Drift(t)

≤2E

[
ϵ1

(
αWs(t) +Rmaxmax

l∈L
Ql(t)

)
− ϵαWs(t)λ̄− ϵ

∑
l∈L

Ql(t)xl

+ ϵ2α (Ws(nT) + λmax
W T)

+ ϵ2α (RmaxWs(nT) + λmax
W T)

+ α(1− pmax
s)D(Ws(t) +D)Rmax + αλmax

W D|M̃(n)
]

≤E

[
−ϵ

(
αλ̄Ws(t) +

∑
l∈L

xlQl(t)

)∣∣∣∣∣ M̃(n)

]
,

where the last inequality holds due to (2.23).

• Case III: Assume that

Ws(nT) < ŨW + 2T +
2
∑

l xlR
maxT

αλ̄

and

Ql(nT) > ŨQ +
2αλ̄T

minl xl
+

2TRmax
∑

l xl
minl xl

> ŨQ

for some l. In this case, we have

Diff(t) ≤ αW̃s(t) ≤ αRmaxWs(t).

Combining with the analysis leading to (2.15) in the proof of Theorem 2, we have that

Drift(t)

≤2E [αRmaxWs(t) + 2αWs(t)

−ϵ

(
αλ̄Ws(t) +

∑
l∈L

xlQl(t)

)∣∣∣∣∣ M̃(n)

]

≤E

[
−ϵ

(
αλ̄Ws(t) +

∑
l∈L

xlQl(t)

)∣∣∣∣∣ M̃(n)

]
,

where the last inequality holds due to (2.25).

www.manaraa.com

32

�

Now, combining case II and case III, we can obtain that

E[V (n+ 1)− V (n)|M̃(n)]

≤Ũ + 2αWs(nT)λ̄D + 2
∑
l∈L

Ql(nT)xlD

+

(n+1)T−1∑
t=nT+D

E

[
−ϵ

(
αλ̄Ws(t) +

∑
l∈L

xlQl(t)

)∣∣∣∣∣ M̃(n)

]

≤Ũ + 2αWs(nT)λ̄D + 2
∑
l∈L

Ql(nT)xlD

− ϵ(T −D)

(
αλ̄Ws(nT) +

∑
l∈L

xlQl(nT)

)

+ ϵ(T −D)(αλ̄T +
∑
l∈L

xlR
maxT)

≤− Ũ −
(n+1)T−1∑
t=nT+D

E

[
ϵ

2

(
αλ̄Ws(t) +

∑
l∈L

xlQl(t)

)∣∣∣∣∣ M̃(n)

]
,

where the last inequality yields from the definition of ŨW and ŨQ. Finally, we can conclude

the theorem from [12,13].

2.6 Simulations

In this section, we use simulations to evaluate the performance of different variants of

WSL and compare it to other scheduling policies. There are three types of flows used in the

simulations:

• S-flow: An S-flow has a finite size, generated from a truncated exponential distribution

with mean value 30 (before truncation) and maximum value 150. Non-integer values are

rounded to integers.

• M-flow: An M-flow keeps injecting bits into the network for 10, 000 time slots and stops.

The number of bits generated at each time slot follows a Poisson distribution with mean

value 1.

www.manaraa.com

33

• L-flow: An L-flow keeps injecting bits into the network and never leaves the network. The

number of bits generated at each time slot follows a truncated Poisson distribution with

mean value 1 (before truncation) and maximum value 10.

Here S-flows represent short-lived flows that have finite sizes and whose bits arrive all at once;

L-flows represent long-lived flows that continuously inject bits and never leave the network;

and M-flows represent flows of finite size but whose arrival rate is controlled at their sources

so that they do not arrive instantaneously into the network. Our simulation will demonstrate

the importance of modeling very large, but finite-sized flows as long-lived flows.

We assume that the channel between each user and the base station is distributed according

to one of the following three distributions:

• G-link: A G-link has five possible link rates {10, 20, 30, 40, 50}, and each of the states

happens with probability 20%.

• P-link: A P-link has five possible link rates {5, 10, 15, 20, 25}, and each of the states

happens with probability 20%.

• R-link: An R-link has five possible link rates {10, 20, 30, 40, 100}, and the probabilities

associated with these link states are {0.5, 0.2, 0.2, 0.09, 0.01}.

The G, P and R stand for Good, Poor and Rare, respectively. We include these three different

distributions to model the SNR variations among the users, where G-links represent links with

high SNR (e.g., those users close to the base station), P-links represent links with low SNR

(e.g., those users far away from the base station), and R-links represent links whose best state

happens rarely. The R-links will be used to study the impact of learning period D on the

network performance.

We name the WSL with the uniform tie-breaking rule WSLU, and the WSL with the oldest-

first tie-breaking rule WSLO. In the following simulations, we will first demonstrate that the

WSLU performs significantly better than previously suggested algorithms, and then show that

the performance can be further improved by choosing a good tie-breaking policy (e.g., WSLO).

We set α to be 50 in all the following simulations.

www.manaraa.com

34

Simulation I: Short-lived Flow or Long-lived Flow?

We first use the simulation to demonstrate the importance of considering a flow with a

large number of packets as being long-lived. We consider a network consisting of multiple S-

flows and three M-flows, where the arrival of S-flows follows a truncated Poisson process with

maximum value 100 and mean value λ. All the links are assumed to be G-links. We evaluate

the following two schemes:

• Scheme-1: Both S-flows and M-flows are considered to be short-lived flows.

• Scheme-2: An M-flow is considered to be long-lived before its last packet arrives, and to

be short-lived after that.

The performance of these two schemes are shown in Figure 2.1, where WS with Uniform

Tie-breaking Rule is used as the scheduling algorithm. We can see that the performances are

substantially different (note that the network is stable under both schemes). The number of

queued bits of M-flows under Scheme-1 is larger than that under Scheme-2 by two orders of

magnitude. This is because even an M-flow contains a huge number of bits (10, 000 on average),

it can be served only when the link rate is 50 under Scheme-1. This simulation suggests that

when the performance we are interested is at a small scale (e.g. acceptable queue-length being

less than or equal to 100) compared with the size of the flow (e.g., 104 in this simulation), the

flow should be viewed as a long-lived flow for performance purpose.

0 0.02 0.04 0.06 0.08 0.1 0.12

10
1

10
2

10
3

Arrival rate of S−flows (λ)

T
ot

al
 q

ue
ue

d
bi

ts
 o

f M
−

flo
w

s

Scheme−1
Scheme−2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
0

2

4

6

8

10

12

14

16

18

20

Arrival rate of S−flows (λ)

A
ve

ra
ge

 n
um

be
r

of
 S

−
flo

w
s

in
 th

e
ne

tw
or

k

Scheme−1
Scheme−2

Figure 2.1 Scheme-1 treats M-flows as short-lived flows, and Scheme-2
treats M-flows as long-lived flows

www.manaraa.com

35

Simulation II: The Impact of Learning Period D

In this simulation, we investigate the impact of D on the performance of WSLU. Recall

that it is nature to choose D = ∞ for purely throughput-optimality considerations, but the

disadvantage is that a flow may stay in the network for a very long time if the best link state

occurs very rarely. We consider a network consisting of S-flows, which arrive according to

a truncated Poisson process with maximum value 100 and mean λ, and three L-flows. All

links are assumed to be R-links. Figure 2.2 depicts the mean and standard deviation of the

file-transfer delays with D = 16 and D = ∞ when the traffic load is light or medium. As we

expected, the standard deviation under WSLU with D = ∞ is significantly larger than that

under WSLU with D = 16 when λ is large. This occurs because the best link rate 100 occurs

with a probability 0.01. This simulation confirms that in practical systems, we may want to

choose a finite D to get desired performance.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

2

4

6

8

10

12

14

16

Arrival rate of S−flows (λ)

M
ea

n
of

 fi
le

−
tr

an
sf

er
 d

el
ay

D=16
D= ∞

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

5

10

15

20

25

30

35

40

45

50

Arrival rate of S−flows (λ)

S
ta

nd
ar

d
de

vi
at

io
n

of
 fi

le
−

tr
an

sf
er

 d
el

ay

D=16
D= ∞

Figure 2.2 The performance of WSLU with D = 16 and D = ∞ when the
traffic load is light or medium

Further we would like to comment that while the WSLU algorithm with a small D has a

better performance in light or medium traffic regimes, throughput optimality is only guaranteed

when D is sufficiently large. So there is a clear tradeoff in choosing D: A small D reduces

the file-transfer delay in light or medium traffic regimes, but a large D guarantees stability in

heavy traffic regime. More discussion can be found in [16].

www.manaraa.com

36

Simulation III: Performance comparison of various algorithms

In the following simulations, we choose D = 16. In the introduction, we have pointed

out that the MaxWeight is not throughput optimal under flow-level dynamics because the

backlog of a short-lived queue does not build up even when it has not been served for a while.

To overcome this, one could try to use the delay of the head-of-line packet, instead of queue-

length, as the weight because the head-of-line delay will keep increasing if no service is received.

In the case of long-lived flows only, this algorithm is known to be throughput-optimal [5]. We

will show that this Delay-based scheduling does not solve the instability problem when there

are short-lived flows.

Delay-based Scheduling: At each time slot, the base station selects a flow i such that

i ∈ argmaxj Dj(t)Rj(t), where Dj(t) is the delay experienced so far by the head-of-line packet

of flow j.

We first consider the case where all flows are S-flows, which arrive according to a truncated

Poisson process with maximum value 100 and mean λ. An S-flow is assigned with a G-link or

a P-link equally likely.

Figure 2.3 shows the average file-transfer delay and average number of S-flows under differ-

ent values of λ. We can see that WSLU performs significantly better than the MaxWeight and

Delay-based algorithms. Specifically, under MaxWeight and Delay-based algorithms, both the

number of S-flows and file-transfer delay explode when λ ≥ 0.102. WSLU, on the other hand,

performs well even when λ = 0.12.

Next, we consider the same scenario with three L-flows in the network. Two of the L-flows

have G-links and one has a P-link. Figure 2.4 shows the average number of short-lived flows

and average file-transfer delay under different values of λ. We can see that the MaxWeight

becomes unstable even when the arrival rate of S-flows is very small. This is because the

MaxWeight stops serving S-flows when the backlogs of L-flows are large, so S-flows stay in

the network forever. The delay-based scheduling performs better than the MaxWeight, but

significantly worse than WSLU.

www.manaraa.com

37

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
0

2

4

6

8

10

12

14

Arrival rate of S−flows (λ)

A
ve

ra
ge

 n
um

be
r

of
 S

−
flo

w
s

in
 th

e
ne

tw
or

k

MaxWeight
Delay−based
WSLU

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
0

2

4

6

8

10

12

14

16

18

20

Arrival rate of S−flows (λ)

A
ve

ra
ge

 fi
le

−
tr

an
sf

er
 d

el
ay

MaxWeight
Delay−based
WSLU

Figure 2.3 The performance of the Delay-based, MaxWeight, and WSLU
algorithms in a network without L-flows

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
0

3

6

9

12

15

18

21

24

Arrival rate of S−flows (λ)

A
ve

ra
ge

 n
um

be
r

of
 S

−
flo

w
s

in
 th

e
ne

tw
or

k

MaxWeight
Delay−based
WSLU

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12
0

3

6

9

12

15

18

21

24

Arrival rate of S−flows (λ)

A
ve

ra
ge

 fi
le

−
tr

an
sf

er
 d

el
ay

MaxWeight
Delay−based
WSLU

Figure 2.4 The performance of the Delay-based, MaxWeight, and WSLU
algorithms in a network with both S-flows and L-flows

Simulation IV: Blocking probability of various algorithms

While our theory assumes that the number of flows in the network can be infinite, in reality,

base stations limit the number of simultaneously active flows, and reject new flows when the

number of existing flows above some threshold. In this simulation, we assume that the base

station can support at most 20 S-flows. A new S-flow will be blocked if 20 S-flows are already

in the network. In this setting, the number of flows in the network is finite, so we compute the

blocking probability, i.e., the fraction of S-flows rejected by the base station.

We consider the case where no long-lived flow is in the network and the case where both

short-lived and long-lived flows are present in the network. The flows and channels are selected

as in Simulation III. The results are shown in Figure 2.5 and 2.6. We can see that the blocking

www.manaraa.com

38

probability under WSLU is substantially smaller than that under the MaxWeight or the delay-

based scheduling. Thus, this simulation demonstrates that instability under the assumption

when the number of flows is allowed to unbounded implies high blocking probabilities for the

practical scenario when the base station limits the number of flows in the network.

0 0.015 0.03 0.045 0.06 0.075 0.09 0.105 0.12 0.135 0.15
0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

Arrival rate of S−flows (λ)

B
lo

ck
in

g
pr

ob
ab

ili
ty

MaxWeight
Delay−based
WSLU

Figure 2.5 The blocking probabilities of the Delay-based, MaxWeight, and
WSLU in a network without L-flows

0 0.015 0.03 0.045 0.06 0.075 0.09 0.105 0.12 0.135 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Arrival rate of S−flows (λ)

B
lo

ck
in

g
pr

ob
ab

ili
ty

MaxWeight
Delay−based
WSLU

Figure 2.6 The blocking probabilities of the Delay-based, MaxWeight, and
WSLU in a network with L-flows

Simulation V: WSLU versus WSLO

In this simulation, we study the impact of tie-breaking rules on performance. We compare

the performance of the WSLU and WSLO. We first study the case where the base station

does not limit the number of simultaneously active flows and there is no long-lived flow in the

network. The simulation setting is the same as that in Simulation III. Figure 2.7 shows the

average file-transfer delay and average number of S-flows under different values of λ. We can

see that the WSLO reduces the file-transfer delay and number of S-flows by nearly 75% when

www.manaraa.com

39

λ = 0.13, which indicates the importance of selecting a good tie-breaking rule for improving

the network performance.

0.1 0.103 0.106 0.109 0.112 0.115 0.118 0.121 0.124 0.127 0.13
0

6

12

18

24

30

36

42

48

Arrival rate of S−flows (λ)

A
ve

ra
ge

 n
um

be
r

of
 S

−
flo

w
s

in
 th

e
ne

tw
or

k

WSLU

WSLO

0.1 0.103 0.106 0.109 0.112 0.115 0.118 0.121 0.124 0.127 0.13
0

8

16

24

32

40

48

56

64

Arrival rate of S−flows (λ)

A
ve

ra
ge

 fi
le

−
tr

an
sf

er
 d

el
ay

WSLU

WSLO

Figure 2.7 The performance of the WSLU and WSLO algorithms in a net-
work without L-flows

Next, we study the case where the base station does not limit the number of simultaneously

active flows and there are three L-flows in the network. Figure 2.8 shows the average number

of short-lived flows and average file-transfer delay under different values of λ. We can see again

that the WSLO algorithm has a much better performance than the WSLU, especially when λ

is large.

0.1 0.102 0.104 0.106 0.108 0.11 0.112 0.114 0.116 0.118 0.12
0

6

12

18

24

30

36

42

48

Arrival rate of S−flows (λ)

A
ve

ra
ge

 n
um

be
r

of
 S

−
flo

w
s

in
 th

e
ne

tw
or

k

WSLU

WSLO

0.1 0.102 0.104 0.106 0.108 0.11 0.112 0.114 0.116 0.118 0.12
12

20

28

36

44

52

60

68

76

84

Arrival rate of S−flows (λ)

A
ve

ra
ge

 fi
le

−
tr

an
sf

er
 d

el
ay

WSLU

WSLO

Figure 2.8 The performance of the WSLU and WSLO algorithms in a net-
work with both S-flows and L-flows

Finally we consider the situation where the base station can support at most 20 S-flows.

A new S-flow will be blocked if 20 S-flows are already in the network. The simulation setting

is the same as that in Simulation IV. We calculate the blocking probabilities, and the results

are shown in Figure 2.9 and 2.10. We can see that the blocking probability under the WSLO

www.manaraa.com

40

is much smaller than that under the WSLU policy when λ is large.

0.1 0.11 0.12 0.13 0.14 0.15
0

0.02

0.04

0.06

0.08

0.1

0.12

Arrival rate of S−flows (λ)

B
lo

ck
in

g
pr

ob
ab

ili
ty

WSLU

WSLO

Figure 2.9 The blocking probabilities of the WSLU and WSLO in a net-
work without L-flows

0.1 0.11 0.12 0.13 0.14 0.15
0

0.06

0.12

0.18

0.24

0.3

Arrival rate of S−flows (λ)

B
lo

ck
in

g
pr

ob
ab

ili
ty

WSLU

WSLO

Figure 2.10 The blocking probabilities of the WSLU and WSLO in a net-
work with L-flows

2.7 Conclusions and Discussions

In this chapter, we studied multiuser scheduling in networks with flow-level dynamics.

We first obtained necessary conditions for flow-level stability of networks with both long-

lived flows and short-lived flows. Then based on an optimization framework, we proposed the

workload-based scheduling with learning that is throughput-optimal under flow-level dynamics

and requires no prior knowledge about channels and traffic. In the simulations, we evaluated

the performance of the proposed scheduling algorithms, and demonstrated that the proposed

algorithm performs significantly better than the MaxWeight algorithm and the Delay-based

algorithm in various settings. Next we discuss the limitations of our model and possible

www.manaraa.com

41

extensions.

2.7.1 The Choice of D

According to Theorem 3, the learning period D should be sufficiently large to guarantee

throughput-optimality. Our simulation results on the other hand suggested that a small D

may result in better performance. Therefore, there is clear trade-off in choosing D. The study

of the choice for D is one potential topic for future work.

2.7.2 Unbounded File Arrivals and File Sizes

One limitation of our model is that the random variables associated with the number of

file arrivals and file sizes are assumed to be upper bounded. One interesting future research

problem is to extend the results to unbounded number of file arrivals and file sizes.

www.manaraa.com

42

CHAPTER 3. Scheduling in OFDM-based Wireless Cellular Networks

In this chapter, I present the results on scheduling in OFDM-based wireless cellular net-

works with flow-level dynamics. Note that in an OFDM-based system, the base station has

multiple frequency bands (channels) for the downlink transmission. The problem is more com-

plicated than the single-channel case because in multichannel scheduling, we need to handle

two problems. The first one is “channel assignment” for each flow, i.e., which channels should

be used to serve the flow. The second problem is “scheduling”, i.e., for each channel, which

flow to serve at each time slot. For the second problem, the single-channel scheduling algo-

rithm (i.e., the workload-based scheduling) provides a good intuition: exploit good channel

rates as much as possible. Based on this intuition, we propose a joint channel-assignment and

scheduling algorithm, which solves the multichannel scheduling problem. Note that the model

we use in this part is slightly different from the single-channel case, and contains two types

of flows, transient flows and resident flows. A flow is called a transient flow if the last packet

of the file has not arrived at the base station; and otherwise, we call the flow a resident flow.

Despite this minor difference, the model is consistent with the one in the single-channel case in

the sense that a transient flow corresponds to a long-lived flow, and a resident flow corresponds

to a short-lived flow.

3.1 Basic Model

In this section, we define the network, channel and traffic models that will be used in this

chapter.

Network model: We consider a wireless downlink network with multiple channels (fre-

quency bands). We let M denote the set of channels and let M = |M|. The network consists

www.manaraa.com

43

of a single base station and multiple flows (mobile users). The flows join the network for the

purpose of receiving files from some remote source which is not modeled in our framework, and

leave the network after downloading the complete file. The remote source transmits the file

to the base-station, and then the base-station transmits to the mobile user. The base station

can communicate with a mobile user using any of the M channels. We assume time is slotted,

and that at each time slot, only one flow can be served over a given channel (frequency band)

but a flow can be served by multiple channels simultaneously. A two-channel, three-mobile

downlink network is demonstrated in Figure 3.1.

Figure 3.1 A two-channel, three-mobile downlink network

Channel model: We denote by Rif (t) the state of channel i seen by flow f in time slot t,

i.e., Rif (t) denotes the number of packets that can be served by the channel at time instant t.

We assume that Rif (t) are a sequence of independent random variables (across time slots and

across users), each distributed like some random variable Rif , where Rif has a finite support.

We denote by Rmax
if the largest possible value of Rif and Rmax

f =
(
Rmax

1f , . . . , Rmax
Mf

)
. We

assume that there exists pmax > 0 such that

Pr(Rif (t) = Rmax
if) ≥ pmax

for all i, f and t.

Traffic model: We denote by F̃f the size of the file associated with flow f and assume F̃f

are a sequence of independent random variables (across flows), each distributed like a random

variable F. Thus, F̃f is the number of packets in flow f ’s file. We classify flows into different

classes according to the maximum-rate vector Rmax
f seen by them. So flows f1 and f2 belong to

www.manaraa.com

44

the same class if Rmax
if1

= Rmax
if2

for all i. We let K denote the set of classes, and assume K = |K|.

We further denote by kf the class of flow f and ΛkF (t) the number of class-k flows that have

a size of F and join the network at time t. We assume ΛkF (t) are a sequence of independent

random variables (across time slots), each distributed like ΛkF , and λkF = E[ΛkF]. We further

assume that the size of a file is upper bounded by Fmax and

∑
k∈K,F≤Fmax

ΛkF (t) ≤ λmax

for any t. Finally, we denote by Ff (t) the number of packets of flow f queued at the base

station at time t, and F(t) the set of flows in the network at time t.

A flow is called a transient flow if the last packet of the file has not arrived at the base

station; and otherwise, we call the flow a resident flow. In this chapter, we assume that the

base station knows when a file is completely transferred to the base station (e.g., the base

station can figure out if a flow is a resident flow by looking for a special end-of-file packet).

We let bf denote the time flow f joins the network, and sf the time flow f becomes a resident

flow. We further denote by L(t) the set of transient flows at time t, and S(t) the set of resident

flows at time t.

3.2 Joint Channel Assignment and Workload Based Scheduling

For single-channel networks in the presence of flow-level dynamics, throughput-optimal

scheduling algorithms have been proposed in [1, 2, 16]. The key idea of these algorithms is

to minimize the number of time-slots used to serve all traffic flows. Note that the minimum

number of time slots required to fully transmit a file f is
⌈
F̃f/R

max
f

⌉
, where Rmax

f is the best

channel state seen by flow f and
⌈
F̃f/R

max
f

⌉
is called the workload of flow f. So the idea is then

to serve a flow f only when Rf (t) = Rmax
f , in other words, serve a flow only if the workload

of that flow can be reduced by one. Since the average workload injected into the network in

one time slot should be less than one given the traffic load is within the throughput region,

scheduling algorithms that reduce workload by one (with a high probability) during each time

slot stabilize the network.

www.manaraa.com

45

The reader may wonder whether we can directly use this workload-based approach to

multichannel networks? For example to be throughput-optimal, is it sufficient to serve on each

channel i a flow such that Rif (t) = Rmax
if ? The answer unfortunately is negative, as shown in

the following example.

Example: Consider a network with two channels with constant service rates: R1f = B+1

and R2f = 2B for all f, and two types of flows in the network: the file size of a type 1 flow

is 2B + 2 and the file size of a type 2 flow is 4B. We assume B ≥ 4 and both types of flows

arrive with a constant rate 1/2, i.e., one new arrival every two time slots.

Under this setting, consider a channel assignment that serves type 1 flows on channel 1

and type 2 flows on channel 2. Since each flow consumes two channel uses under this channel

assignment, the network is stable.

However, we will now show that throughput optimality is not guaranteed by serving on

each channel i a flow with Rif (t) = Rmax
if . For this purpose, consider a scheduling policy which

gives priority to type 2 flows on channel 1 and priority to type 1 flows on channel 2.

Note that each type 1 flow requires two channel uses, irrespective of the channels assigned to

it, so channel 2 is fully occupied by type 1 flows with arrival rate 1/2. Each type 2 flow requires

four channel uses on channel 1, so channel 1 alone cannot support type 2 flows with arrival rate

1/2. However, since channel 2 is fully occupied by type 1 flows, the number of type 2 flows will

build up and the network is unstable. While this example considers deterministic arrivals for

simplicity, it is not difficult to construct an example with stochastic arrivals to demonstrate the

lack of throughput optimality of a policy which schedules a user with the best channel state on

each channel. �

From this example, we can see the direct adoption of the workload-based algorithm for single

channel networks may not be throughput-optimal for multichannel networks. This is because,

in a multichannel network, a flow can be served by more than one channel, and the channels

may have different best channel states. Therefore, to achieve the maximum throughput, we

need to intelligently split a flow among the M channels. In the previous example, the optimal

solution is to assign all type-1 flows to channel 1 and all type-2 flows to channel 2. Now to

www.manaraa.com

46

develop efficient channel-assignment algorithms, our first step is to understand the throughput

region of a multichannel network.

3.2.1 Necessary Conditions for Stability

To describe necessary conditions for supportability, we introduce the concept of a chan-

nel assignment vector h. Associated with each flow is a channel assignment vector h =

(h1, h2, ..., hM), where hi denotes the number of time slots allocated to the flow on chan-

nel i. The parameter hi can be viewed as the workload imposed by the flow on channel i.

For example, in a network with three channels, hf (t) = (0, 1, 1) means that after time slot

t, the base station is allowed to serve flow f once (one time slot) over channel 2 and 3, but

not allowed to serve the flow over channel 1. Next we define Qi(t) =
∑

f∈S(t) hif (t), where

hif (t) is the ith element of vector hf (t). Now given arrival rates {λkF }, we say that {λkF } is

supportable if there exists a scheduling algorithm, under which

lim
t→∞

E

[∑
i

Qi(t)

]
< ∞

holds.

Further, if a flow has F packets, then we only need to consider channel assignment vectors

such that
∑

i∈M hi ≤ F . If a traffic load is supportable, then the average rate at which

workload arrives on each channel should be less than one, so we obtain the following necessary

conditions for supportability.

Lemma 4. If arrival rates {λkF } are supportable, then there exist Z∗
h|kF ≥ 0 such that∑

k,F,h

λkFZ
∗
h|kFhi ≤ 1, i = 1, 2, ...,M (3.1)

∑
h

Z∗
h|kF = 1, ∀k, F (3.2)

Z∗
h|kF = 0 if F >

∑
i∈M

hiR
max
ik (3.3)

�

We comment that Z∗
h|kF can be viewed as the fraction of class k flows of size F that are

assigned the channel assignment vector h. Inequality (3.1) is the capacity constraint which

www.manaraa.com

47

says that the average workload assigned to a channel should be less than one. Inequality (3.2)

states that every file should be associated with a channel assignment vector, and (3.3) states

that considering a flow f, the channel assignment vector should guarantee sufficient service

for transmitting the complete file. We do not provide a proof of Lemma 4. The proof follows

along the lines of similar proofs in [14] or [5].

3.2.2 Joint Channel-Assignment and Workload-based Scheduling

Now based on the necessary conditions (Lemma 4), we derive an on-line channel-assignment

algorithm using an optimization based approach. Consider the following optimization problem

(feasibility problem):

min
Z

0∑
k,F,h

λkFZh|kFhi ≤ 1, i = 1, 2, ...,M

∑
h

Zh|kF = 1, ∀k, F

Zh|kF = 0 if F >
∑
i∈M

hiR
max
ik

Zh|kF ≥ 0, ∀h, k, F

By appending some of the constraints to the objective using Lagrangian multipliers, we get:

minZ
∑

iQi

(∑
k,F,h λkFZ

∗
h|kFhi − 1

)
subject to:

∑
h Zh|kF = 1, ∀k, F

Zh|kF = 0 if F >
∑

i∈M hiR
max
ik

Zh|kF ≥ 0, ∀h, k, F,

where Qi is the Lagrangian multiplier associated with constraint
∑

k,F,h λkFZh|kFhi ≤ 1.

The partially augmented problem can be decomposed into subproblems associated with

www.manaraa.com

48

each pair of k and F :

minZ
∑

h

∑
iQiZh|kFhi

subject to:
∑

h Zh|kF = 1,

Zh|kF = 0 if F >
∑

i∈M hiR
max
ik

Zh|kF ≥ 0, ∀h, k, F.

Since the objective function is linear, the subproblem (for fixed k and F) can be further written

as:

minh
∑

iQihi

subject to: F ≤
∑

i∈M hiR
max
ik .

Therefore for each flow, the channel-assignment problem can be written as:

minh
∑

iQihi

subject to: F̃f ≤
∑

i∈M hiR
max
if .

Recall that Lagrangian multipliers can be viewed as the price for using a given resource.

Thus, if the Lagrangian multipliers are given, the channel assignment problem becomes a load

balancing problem in which channel assignment is performed to minimize a weighted sum

of channel prices. To compute the channel prices, we use the well-known intuition that the

Lagrange multipliers are proportional to queue lengths. Note that the Lagrangian multiplier

Qi is associated with the constraint
∑

k,F,h λkFZh|kFhi ≤ 1, where
∑

k,F,h λkFZh|kFhi is the

average incoming workload during each time slot. Thus, the natural queue to consider here is

the overall workload assigned to channel i that has not yet been served by the network. We

describe it more precisely next.

For each flow f, we define a channel assignment vector at time slot t

hf (t) = (h1f (t), h2f (t), ..., hMf (t)) ,

where hif (t) is the number of remaining time slots assigned to serve flow f over channel i at

time slot t.

www.manaraa.com

49

We then use Qi(t) as an estimate of the Lagrangian multiplier Qi and propose the following

algorithm.

Joint Channel-Assignment and Workload-based Scheduling (CA-WS):

(i) Channel-assignment: When the last packet of flow f is received at the base station (at

time slot sf),
1 the base station computes hf (sf) by solving the following optimization

problem:

OPTf = min
∑

i∈MQi(bf)hif

subject to: F̃f ≤
∑

i∈M hifR
max
if ,

where hif are non-negative integers. Clearly hf (t) = 0 for t < sf .

(ii) Workload-based scheduling: At time slot t, the base station selects a file f for channel

i such that

Rif (t) = Rmax
if and hif (t) > 0, (3.4)

and transmits Rif (t) packets to mobile user f. Then, the base station reduces hif (t)

by one. If no flow satisfies (3.4), the base station randomly selects a flow, say flow f,

and transmits Rif (t) packets to mobile f (in this case, hif (t) is not updated). Ties are

broken arbitrarily. When the file f has been completely transmitted to mobile f, the

base station sets hif (t) = 0 for all i.

�

Theorem 5. Assume that sf−bf ≤ Tin for all f. Given arrival rates {λkF } such that { 1
1−ϵλkF }

are supportable, the CS-WS algorithm guarantees

lim
t→∞

E

[∑
i

Qi(t)

]
< ∞.

1Here for simplicity we only consider the case where a flow can be served only after its last packet arrives at
the system. Later we will consider a more general case where a flow may be served before the arrival of its last
packet.

www.manaraa.com

50

Proof. The proof of this theorem follows from the proof of Theorem 8 to be presented in the

next section. Therefore, we omit the details here.

Remark: The theorem assumes sf − bf ≤ Tin, which means that the injection period of

a flow (the time duration from the first packet arrives at the base station to the last packet

arrives at the base station) is bounded by Tin. For example, if the flow is a constant-bit-rate

flow with rate r, then the injection period is upper bounded by Fmax/r; and if the flow is an

elastic flow whose rate is controlled by congestion control algorithm, then the injection period

is also bounded when the injection rate is lower bounded as in the TCP congestion control

algorithm (e.g., at least one packet over a fixed number of time slots).

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.36 0.4 0.44 0.48
0

20

40

60

80

100

120

140

160

Arrival rate λ (flows per time slot)

A
ve

ra
ge

 fi
le

−
tr

an
sf

er
 d

el
ay

 (
tim

e
sl

ot
s

pe
r

flo
w

)

MaxWeight
CA−WS

Figure 3.2 Average file-transfer delay of the CA-WS and MaxWeight algo-
rithms

Theorem 5 shows that the CA-WS algorithm is throughput-optimal for multichannel down-

link networks, but the algorithm has two weaknesses:

• The performance of the algorithm can be poor in light to moderate traffic regimes. This

is because (i) the base station serves a file only after the complete file is received at the

base station, which results in large waiting times for large files, and (ii) the scheduling

algorithm is independent of queue-sizes even in a light traffic regime, which again may

result in large file-transfer delays for large files. Figure 3.2 shows a simulation result

where we compare the MaxWeight algorithm and the CA-WS algorithm with uniform

tie-breaking rule (CA-WSU) (the simulation setting will be described in Section 3.4).

We can see while the CA-WSU has a smaller file-transfer delay than the MaxWeight

www.manaraa.com

51

in heavy traffic regime, in light and medium traffic regimes, the performance of the

CA-WSU algorithm is much worse than the MaxWeight algorithm.

In fact, it has been observed in [16] that from the performance perspective, we may need

to serve the files with large sizes using the MaxWeight algorithm. The authors in [16]

suggest that flows be classified as long-lived flows and short-lived flows, and use different

scheduling algorithms for different types of flows. However, they do not provide any

criterion for the classification. Further, in practice, the base station may not even know

the size of a file before the file fully arrives at the base station.

• The algorithm assumes that Rmax
f is known a priori, which is unrealistic in practice.

To overcome these two weaknesses, we introduce a hybrid CA-WS algorithm in the next

section.

3.3 A Throughput-Optimal Hybrid CA-WS Algorithm

The key idea behind our hybrid algorithm is as follows: any flow whose last packet has

not arrived at the base station (recall that these are called transient flows in the terminology

of Section II) is treated as a persistent flow as in the traditional MaxWeight algorithm. The

MaxWeight algorithm is then used to decide schedules among these flows. Flows that have

fully arrived at the base station (called resident flows in Section II) are scheduled using the

CA-WS algorithm. However, we have to further decide whether to schedule transient flows or

resident flows over each channel. This is one of the key elements of the hybrid algorithm to be

described later.

To tackle the issue of Rmax
f , we adopt the learning idea introduced in [16]. We define a

R̃max
if (t) to be the best state of channel i seen by flow f from bf to min{t, bf + D}, and use

R̃max
if (t) to approximate Rmax

if . The parameter D is called the learning period.

Before we present the hybrid CS-WS algorithm, we first define the sequence of events that

take place within a slot. We assume the new flows (mobile users) arrive at the beginning of

the time slot t (denoted by tb) and the channel state of time t is also measured at tb. Then

www.manaraa.com

52

we assume that any computation or recomputation of hf (t) occurs at time tm. Finally, the

packets are served at the end of each time slot (denoted by te). The sequence of these events

is demonstrated in Figure 3.3.

m

packet departurespacket arrivals

computation or recomputation of h

t b ett

Figure 3.3 The sequence of flow/packet arrivals, computation or recompu-
tation of h(t) and packet departures within a time slot

www.manaraa.com

53

Hybrid Channel Assignment and Workload-based Scheduling (Hybrid CA-WS):

At time slot t, the flows are served as follows:

(i) When a new flow (say flow f) joins the network, it records Qi(bf) for all channels i.

(ii) Channel learning: The base station measures Rif (t) for all i and f. Consider a flow f.

If t ≤ bf +D and Rif (t) > R̃max
if (t− 1) for some i, then flow f updates the R̃max based

on the new channel state, i.e.,

R̃max
if (t) = max

{
R̃max

if (t− 1), Rif (t)
}
.

(iii) Channel-assignment: Consider a resident flow f. If t ≤ bf+D and R̃max
if (t) ̸= R̃max

if (t−

1) for some i, the base station recomputes hf (t) by solving the following optimization

problem:

OPTf (t) = min
∑

i∈MQi(bf)hif (t)

subject to: Ff (t) ≤
∑

i∈M hif (t)R̃
max
if (t),

where hif (t) are non-negative integers. Note that the channel assignment for flow f is

recomputed every time we have a better estimate of Rmax
if for any channel i up to time

bf +D. This is necessary because the channel assignment algorithm is derived assuming

Rmax
f is known.

(iv) Recall L(t) denotes the set of transient flows at time t and S(t) denotes the set of resident

flows at time t. The base station first checks:

∑
f∈L(t)

Ff (t) ≤
∑

f∈S(t)

Ff (t). (3.5)

• Workload-based scheduling: If inequality (3.5) holds, the base station selects a

resident file f for channel i such that

R̃max
if (t) ≤ Rif (t) and hif (t) ̸= 0, (3.6)

and transmits Rif (t) packets to mobile user f. Then the base station reduces hif (t)

by one. If no resident flow satisfies (3.6), the base station randomly selects a flow,

www.manaraa.com

54

say flow f, and transmits Rif (t) packets to mobile f. Ties are broken uniformly or

according to the arrival time bf (giving priority to flows with small bf may improve

delay performance in practice although it has no effect on stability). When the file

of flow f is completely transferred to the mobile user, the base station sets hif (t) = 0

for all i.

• MaxWeight scheduling: If inequality (3.5) does not hold, then the base station

selects a transient file f∗ for channel i such that

f∗ ∈ arg max
f∈L(t)

Ff (t)Rif (t), (3.7)

and transmits min{Ff (t), Rif∗(t)} packets to mobile user f∗ over channel i.

�

Remark 1: While each resident flow is associated with a channel assignment vector hf (t),

the packets of a flow are stored in the same queue and served in a First-In, First-Out (FIFO)

fashion.

Remark 2: The advantages of using the MaxWeight algorithm for large-size flows are

two-fold: (i) the file with a large size could experience smaller delay because it can be served

at any Rif (t) not just when the channel reaches the best state, and (ii) when only a few large-

size flows are in the network, the MaxWeight algorithm can lead to a fair resource allocation.

These advantages will be observed in the simulations.

In the next subsection, we will prove that the hybrid CA-WS algorithm is also throughput

optimal. We would like to emphasize that because of the channel-assignment algorithm, which

is not required for single-channel networks, the analysis is completely different from those

in [1, 2, 16].

3.3.1 Throughput Optimality of the Hybrid CA-WS Algorithm

Without loss of generality we assume that Tin = Fmax, i.e., we assume that the injecting

rate of any flow is at least one. All of our results apply more generally, but this assumption

www.manaraa.com

55

simplifies a lot of the notation. We first show that the number of transient flows is always

bounded.

Lemma 6. Assume that sf − bf ≤ Tin for all f, then no more than λmaxFmax transient flows

are in the network during any time slot.

Proof. Recall that we assume that file sizes are upper bounded by Fmax, and the injecting rate

is at least one. Therefore, the injection period, the time taken for a transient flow to become

a resident flow, is upper bounded by Fmax. Furthermore, the number of new files joining the

network at each time slot is bounded by λmax, so the number of transient files in the network

is upper bounded by λmaxFmax.

Since the number of transient flows is upper bounded at any time slot, to prove the stability

of the network, we only need to consider the number of resident flows.

Before we proceed, we present a lemma first which is useful in the proof of the stability of

hybrid CA-WS algorithm.

Lemma 7. Consider the hybrid CA-WS with oldest-first or uniform tie-breaking rule and define

Ri(t) to be the event that a resident flow f with sf ≥ nT is served over channel i at time t.

Given any δ > 0, there exists Qδ such that if Qi(nT) > Qδ, then for any nT ≤ t ≤ (n+1)T −1,

Pr (Ri(t)) < δ.

Proof. For any t ∈ [nT, (n+1)T − 1], we denote by Oi(t) the set of resident flows that arrived

before nT −D (D ≥ Fmax) and have hif (t) > 0. It can be easily verified that

|Oi(t)| ≥
Qi(nT)

Fmax
− λmaxD − T.

Consider the hybrid CA-WS with the oldest-first tie-breaking rule. Only if none of flows

in Oi(t) have Rif (t) = Rmax
if , the base station will serve a flow which becomes a resident flow

in [nT, (n+ 1)T − 1] over channel i. Therefore, we have

Pr (Ri(t)) ≤ (1− pmax)
Qi(nT)

Fmax −λmaxD−T ,

and the lemma holds for the oldest-first tie-breaking rule.

www.manaraa.com

56

Consider the hybrid CA-WS with the uniform tie-breaking rule. For any t such that

nT ≤ t ≤ (n+ 1)T − 1, the number of flows becoming resident flows after nT is no more than

λmax(T + Fmax). Furthermore, according to the Chernoff’s bound, we have

Pr
(∣∣{f : f ∈ Oi(t) and Rif (t) = Rmax

if }
∣∣ ≥ (1− δ)Θ

)
≥ 1− exp

(
−δ2Θ

3

)
,

where Θ = pmax(Qi(nT)
Fmax − λmaxD − T).

Therefore, it can be easily shown that

Pr (Ri(t)) ≤
λmax(T + Fmax)

λmax(T + Fmax) + (1− δ)Θ
+ exp

(
−δ2Θ

3

)
,

and the lemma holds for the uniform tie-breaking rule.

To study the performance of the hybrid CA-WS, we first define a sampled version of the

network, sampled once every T time slots, as follows:

M(n) = {Yf (nT), Ff (nT), R̃
max
f (nT),min{D,nT − bf},

Q(bf),hf (nT)}f∈L(t)∪S(t),

where Yf (nT) is the number of packets of flow f that have not been transmitted to the base

station. It is easy to see that M(n) is a Markov chain. We also assume that the arrival process

is such that the Markov chain is irreducible and aperiodic. The sampling interval T in the

definition of M(n) above will be chosen later. The reason we need this T is that our proof

uses the standard drift argument in Foster’s criterion (see [12]), but the drift of M(n) may not

be negative over successive time instants. The drift will be negative only after most flows in

the network get reasonably accurate estimates of their channel assignment vectors, which may

take several recomputations due to updates in the estimate of Rmax. The parameter T tries to

capture the time interval that it takes for most flows to get sufficiently accurate estimates of

their channel assignment vectors.

Theorem 8. Assume that sf −bf ≤ Tin for all f. Given arrival rates {λik} such that { 1
1−ϵλik}

are supportable, there exists a Dϵ such that the Markov chain M(n) is positive-recurrent under

the hybrid CA-WS algorithm with D ≥ Dϵ, which implies that limt→∞E [
∑

iQi(t)] < ∞.

www.manaraa.com

57

Proof. We consider the Lyapunov function

V (n) =
∑
i∈M

Q2
i (nT),

and introduce the following notations:

• C(t) : We define C(t) to be the set of flows who become resident flows at the beginning

of time slot t.

• Ai(t) : We define Ai(t) =
∑

f∈C(t) hif (tm), which is the increase in workload for channel

i due to new resident flows, i.e., the flows in C(t).

• µi(t) : We define µi(t) =
∑

f∈S(t) (hif (tm)− hif (te)) , which is the decrease in workload

for channel i when a resident flow is served over channel i.

• Ar
i (t) : We define Ar

i (t) =
∑

f∈S(t)\C(t)

(hif (tm)− hif (tb))
+ , which is the increase in work-

load for channel i due to the adjustment of the channel assignment vectors of existing

resident flows (in other words, due to the recomputation of hf).

• µr
i (t) : We define µr

i (t) =
∑

f∈S(t)\C(t)

(hif (tb)− hif (tm))+ , which is the decrease in work-

load for channel i due to the adjustment of channel assignments of existing resident

flows.

Without causing confusion, we let hif (t) = hif (tm), i.e., hif (t) is the value after recomputation

at time t. Now based on the notations above, the dynamics of Qi(t) can be written as

Qi(t+ 1) = Qi(t) +Ai(t)− µi(t) +Ar
i (t)− µr

i (t).

Note that the number of flows joining the network at each time slot is bounded by λmax,

and the file size is also bounded by Fmax. Further each flow recomputes hf for at most D time

slots. Therefore Ai(t), µi(t), A
r
i (t), and µr

i (t) are all bounded:

Ai(t) ≤ λmaxFmax

µi(t) ≤ Fmax

Ar
i (t) ≤ λmaxFmaxD

µr
i (t) ≤ λmaxFmaxD.

www.manaraa.com

58

Note that in general µi(t) ≤ 1 since only one channel use is allowed in one time slot. The

case µi(t) > 1 occurs when the flow is completely transmitted to the mobile user and we set

hif (t) = 0. Note that when there is no flow having Rif (t) = R̃max
if (t), the base station serves

a flow f at rate Rif (t) but does not reduce hif (t). So it is possible that even after almost all

packets of a flow have been transmitted, we still have hif (t) > 1.

Now based on the definitions and notations above, we have

|Qi(nT)−Qi(s)| ≤ T (Fmax + λmaxFmax(2D + 1))

for all s ∈ [nT, (n+ 1)T − 1], and

E[V (n+ 1)− V (n)|M(n)] ≤ Φ1

+ 2
∑
i

Qi(nT)E

 (n+1)T−1∑
t=nT

Ai(t) +Ar
i (t)− µr

i (t)

∣∣∣∣∣∣M(n)

 (3.8)

− 2
∑
i

Qi(nT)E

 (n+1)T−1∑
t=nT

µi(t)

∣∣∣∣∣∣M(n)

 , (3.9)

where Φ1 = M (T (Fmax + λmaxFmax(2D + 1)))2 .

In the following analysis, we will show that there exists a finite set W such that when

M(n) ̸∈ W , we have

E[V (n+ 1)− V (n)|M(n)] ≤ − ϵ

2M

∑
i

Qi(nT). (3.10)

The theorem then follows from the Foster’s criterion [12]. To prove (3.10), we will first analyze

(3.8) and (3.9) separately, and then show that

Φ1 + (3.8) + (3.9) ≤ − ϵ

2M

∑
i

Qi(nT)

when M(n) ̸∈ W.

Analysis of (3.8)

Denote by G(n) the set of resident flows that are in the network at least in one of the time

slots belonging to [nT, (n+1)T − 1]. We further divide G(n) into five subsets (see Figure 3.4):

www.manaraa.com

59

• GA(n) : The set of resident flows that (i) become resident during [nT, (n+1)T−D−1], (ii)

are not served during [nT, (n+1)T −1], and (iii) have learned Rmax by time (n+1)T −1.

• GB(n) : The set of resident flows that (i) become resident during [nT, (n+1)T −D− 1],

(ii) are not served during [nT, (n + 1)T − 1], and (iii) have not learned Rmax by time

(n+ 1)T − 1.

• GC(n) : The set of resident flows that become resident during [nT, (n+1)T −D− 1] and

are served at least once during [nT, (n+ 1)T − 1].

• GD(n) : The set of resident flows that become resident during [(n+1)T −D, (n+1)T −1].

• GE(n) : The set of resident flows that are in the system at nT.

Class A+B+C

nT (n+1)T−D−1 (n+1)T−1

Class E Class D

Figure 3.4 Five subsets of G(n)

It is obvious to see that

G(n) = GA(n) ∪ GB(n) ∪ GC(n) ∪ GD(n) ∪ GE(n).

Recall that sf denotes the time flow f becomes a resident flow, so (3.8) can be rewritten as

(n+1)T−1∑
t=nT

(Ai(t) +Ar
i (t)− µr

i (t)) (3.11)

=
∑

f∈G(n)

(n+1)T−1∑
t=max{sf ,nT}

(Aif (t) +Ar
if (t)− µr

if (t)), (3.12)

where Aif (t), A
r
if (t) and µr

if (t) are workload adjustments related to flow f. Next we analyze

(3.12) case by case. To simplify our notations, we assume D ≥ max{Fmax, λmaxFmax

mink,F λkF
}.

In the following analysis, we will show that the subset of flows that determines the value of

(3.8) is GA(n). Since the flows in GA(n) learn the correct Rmax
f by (n + 1)T − 1 and are not

served during [nT, (n + 1)T − D − 1], we can compare the channel assignment vector under

www.manaraa.com

60

the hybrid CA-WS with that defined in the necessary conditions, which will lead to (3.10) by

combining the analysis of (3.9).

Case 1: We first consider a flow in GA(n), and have

(n+1)T−1∑
t=sf

Aif (t) +Ar
if (t)− µr

if (t) (3.13)

= hif (sf) +

(n+1)T−1∑
t=sf+1

(Ar
if (t)− µr

if (t)). (3.14)

Since f is not served before (n+1)T, according to the definitions of Aif , A
r
if , and µr

if , we have

hif (t+ 1)− hif (t) = Ar
if (t+ 1)− µr

if (t+ 1)

for any sf ≤ t ≤ (n+ 1)T − 2, which implies that

hif (sf) +

(n+1)T−1∑
t=sf+1

(Ar
if (t)− µr

if (t)) = hif ((n+ 1)T − 1),

and

E

 ∑
f∈GA(n)

(n+1)T−1∑
t=bf

(Aif (t) +Ar
if (t)− µr

if (t))

∣∣∣∣∣∣M(n)


= E

[∑
f∈GA(n) hif ((n+ 1)T − 1)

∣∣∣M(n)
]
.

Case 2: Following the analysis of Case 1, for any f ∈ GB(n), we obtain

(n+1)T−1∑
t=nT

(Aif (t) +Ar
if (t)− µr

if (t)) = hif ((n+ 1)T − 1).

Since hif ((n+ 1)T − 1) ≤ Fmax for any f and any channel i,

E

 ∑
f∈GB(n)

(n+1)T−1∑
t=sf

(Aif (t) +Ar
if (t)− µr

if (t))

∣∣∣∣∣∣M(n)


= E

 ∑
f∈GB(n)

hif ((n+ 1)T − 1) |M(n)


≤ FmaxE

 ∑
f∈GB(n)

1

 .

Now we study the size of GB(n). According to Lemma 6, the network has at most λmaxFmax

transient flows at time slot nT −1, which may become resident flows during [nT, (n+1)T −1].

www.manaraa.com

61

Also at each time slot, at most λmax flows join the network. For a resident flow with sf ≤

(n+ 1)T −D, the probability that the flow has not learned the Rmax by time (n+ 1)T − 1 is

less than M (1− pmax)D . Therefore, we have

E

 ∑
f∈GB(n)

1


≤ (λmaxFmax + (T −D)λmax)M (1− pmax)D ,

and

E

 ∑
f∈GB(n)

(n+1)T−1∑
t=sf

(Aif (t) +Ar
if (t)− µr

if (t))

∣∣∣∣∣∣M(n)


≤ Fmax (λmaxFmax + (T −D)λmax)M (1− pmax)D

≤ FmaxλmaxTM (1− pmax)D ,

where the last inequality holds under the assumption that D ≥ Fmax.

Case 3: We now study the flows in GC(n). Since flows f are served before (n + 1)T,

according to the definition of the notations, we have

hif (t+ 1)− hif (t) = Ar
if (t+ 1)− µr

if (t+ 1)− µif (t)

for any sf ≤ t ≤ (n+ 1)T − 2, which implies that

(n+1)T−1∑
t=sf

Aif (t) +Ar
if (t)− µr

if (t)

= hif (sf) +

(n+1)T−1∑
t=sf+1

(Ar
if (t)− µr

if (t))

= hif ((n+ 1)T − 1) +

(n+1)T−1∑
t=sf+1

µif (t)

≤ Fmax,

and

E

 ∑
f∈GC(n)

(n+1)T−1∑
t=bf

(Aif (t) +Ar
if (t)− µr

if (t))

∣∣∣∣∣∣M(n)


= FmaxE

[∑
f∈GC(n) 1

∣∣∣M(n)
]
.

www.manaraa.com

62

Note that the number of flows that become resident during [nT, (n + 1)T − D − 1] is no

more than

λmaxFmax + λmax(T −D) ≤ λmaxT

since we have at most λmaxFmax transient flows at time nT − 1 and at most λmax new flows

join the network at each time slot t.

Now according to Lemma 7, that given any δ, there exists Qδ such that if Qi(nT) ≥ Qδ,

then the probability that a flow with sf ≥ nT is served any given time slot in [nT, (n+1)T −1]

is less than δ. Therefore, if Qi(nT) ≥ Qδ, we have that

E

 ∑
f∈GC(n)

1

∣∣∣∣∣∣M(n)

 ≤ λmaxT 2δ;

and otherwise

Qi(nT)E

 ∑
f∈GC(n)

(n+1)T−1∑
t=sf

Aif (t) +Ar
if (t)− µr

if (t)

∣∣∣∣∣∣M(n)


≤ Qδλ

maxFmaxT.

We then conclude that

∑
i

Qi(nT)E

 ∑
f∈GC(n)

(n+1)T−1∑
t=sf

Aif (t) +Ar
if (t)− µr

if (t)

∣∣∣∣∣∣M(n)


≤
∑
i

(
Qi(nT)λ

maxFmaxT 2δ +Qδλ
maxFmaxT

)
.

Case 4: We now study the flows in GD(n). Following the analysis of Case 3, the size of set

GD(n) is upper bounded by

λmaxFmax + λmaxD.

Therefore,

E

 ∑
f∈GD(n)

(n+1)T−1∑
t=sf

(Aif (t) +Ar
if (t)− µr

if (t))

∣∣∣∣∣∣M(n)


= E

 ∑
f∈GD(n)

hif ((n+ 1)T − 1) +

(n+1)T−1∑
t=sf+1

µif (t)

∣∣∣∣∣∣M(n)


≤ Fmax (λmaxFmax + λmaxD) .

www.manaraa.com

63

Case 5: We now analyze the last case: the set GE(n). For a flow f ∈ GE(n), we have the

following facts:

• Aif (t) = 0,

• |Ar
if (t)− µr

if (t)| ≤ Fmax for any nT ≤ t < nT +D, and

• Ar
if (t) = µr

if (t) = 0 for t ≥ nT +D.

The last equality holds because a resident flow adjusts its hf (t) for at most D time slots after

joining the network.

Now note that at most λmaxD flows join the network during [nT −D,nT − 1], which are

the only flows in set GE(n) that recompute hf during [nT, (n+1)T − 1]. Therefore, we obtain

E

 ∑
f∈GE(n)

(n+1)T−1∑
t=nT

(Aif (t) +Ar
if (t)− µr

if (t))

∣∣∣∣∣∣M(n)


≤ λmaxD2Fmax.

�

Summarizing the five cases above, we obtain

(3.8)

≤2
∑
i

Qi(nT)E

 ∑
f∈GA(n)

hif ((n+ 1)T − 1)

∣∣∣∣∣∣M(n)


+2
∑
i

Qi(nT)
(
FmaxλmaxTM (1− pmax)D +

λmaxFmaxT 2δ + 2λmaxFmaxD + λmaxFmaxD2
)

+MQδλ
maxFmaxT. (3.15)

Analysis of (3.9)

Next we consider (3.9) under the assumption that

∑
i

Qi(nT) > (Fmax)2 λmax + TMFmax. (3.16)

www.manaraa.com

64

It can be easily verified that under assumption (3.16), the base station always serves resident

flows during [nT, (n+1)T−1] because we have at most λmaxFmax transient flows in the network

at any given time.

Since hif (t) ≤ Fmax for any i and f, there are at least Qi(t)/F
max flows having hif (t) > 0

at time t. Therefore, we obtain that

Pr(µi(t) = 1) ≥ 1− (1− pmax)
Qi(t)

Fmax ,

and

E [µi(t)|M(n)] ≥ 1− (1− pmax)
Qi(nT)−

√
Φ1

Fmax . (3.17)

Analysis of (3.8)+(3.9)

Recall that the theorem assumes that there exists Z∗
h|kF such that

∑
k,F,h

λkFZ
∗
h|kFhi ≤ 1− ϵ, i = 1, 2, ...,M (3.18)

∑
h

Z∗
h|kF = 1, ∀k, F (3.19)

Zh|kF = 0 if F >
∑
i∈M

hiR
max
ik , . (3.20)

Next we define

HkF (n) = {f : f ∈ GA(n), kf = k, F̃f = F},

i.e., HkF (n) is the set of class-k flows that belong to set GA(t) and with file length F. For any

f ∈ HkF (n), since Rmax
f has been correctly learned at time (n+ 1)T − 1, we have

∑
i

Qi(bf)hif ((n+ 1)T − 1) ≤

(∑
i

Qi(bf)hi

)

for any h such that
∑

i hiR
max
if ≥ F. Based on (3.19), we further obtain

∑
i

Qi(bf)hi,f ((n+ 1)T − 1) ≤
∑
h

Z∗
h|kF

(∑
i

Qi(bf)hi

)

=
∑
i

Qi(bf)
∑
h

Z∗
h|kFhi. (3.21)

www.manaraa.com

65

Now based on inequality (3.21) and assume T > Fmax, we obtain

∑
k,F

∑
i

Qi(nT)E

 ∑
f∈HkF (n)

hi,f ((n+ 1)T − 1)

∣∣∣∣∣∣M(n)


≤(a)Φ1 +

∑
k,F

E

 ∑
f∈HkF (n)

∑
i

Qi(bf)hi,f ((n+ 1)T − 1)

∣∣∣∣∣∣M(n)


≤Φ1 +

∑
k,F

E

 ∑
f∈HkF (n)

∑
i

Qi(bf)
∑
h

Z∗
h|kFhi

∣∣∣∣∣∣M(n)


≤(a)2Φ1 +

∑
k,F

∑
i

(
Qi(nT)

(∑
h

Z∗
h|kFhi

)
×

E

 ∑
f∈HkF (n)

1

∣∣∣∣∣∣M(n)


≤(b)2Φ1 +

∑
k,F

∑
i

(
Qi(nT)

(∑
h

Z∗
h|kFhi

)
×

E

 |L(nT)|+ ∑
f :(n+1)T−D−1≥bf≥nT

1

∣∣∣∣∣∣M(n)


≤2Φ1 +

∑
k,F

∑
i

(
Qi(nT)

(∑
h

Z∗
h|kFhi

)
×

(λmaxFmax + λkF (T −D)))

≤2Φ1 +
∑
k,F

∑
i

Qi(nT)TλkF

∑
h

Z∗
h|kFhi, (3.22)

where inequality (a) holds because (n + 1)T − 1 ≥ bf ≥ nT − Fmax for any f ∈ HkF (n) and

|Qi(nT)−Qi(bf)| ≤ T (Fmax + λmaxFmax(2D + 1)) , and inequality (b) holds because the flows

in HkF (n) must arrive during [nT, (n+ 1)T − 1] or are transient flows at time nT.

Now by combining inequalities (3.15) and (3.22), we get that

(3.8)− 2
∑

iQi(nT)
∑(n+1)T−1

t=nT

∑
h,k,F λk,FZ

∗
h|k,Fhi

≤ 4Φ1 +MQδλ
maxFmaxT

+2
∑

iQi(nT)
(
FmaxλmaxTM (1− pmax)D +

λmaxFmaxT 2δ + 2λmaxFmaxD + λmaxFmaxD2
)

(3.23)

www.manaraa.com

66

Further, based on inequality (3.17), we have

2
∑
i

Qi(nT)

(n+1)T−1∑
t=nT

∑
h,k,F

λk,FZ
∗
h|k,Fhi + (3.9)

= 2
∑
i

Qi(nT)×

E

 (n+1)T−1∑
t=nT

∑
h,k,F

λk,FZ
∗
h|k,Fhi − µi(t)

∣∣∣∣∣∣Q(nT)


≤ 2

∑
i

Qi(nT)

(
−ϵT + T (1− pmax)

Qi(nT)−
√

Φ1
Fmax

)
. (3.24)

Combining inequalities (3.23) and (3.24), we have

E[V (n+ 1)− V (n)|M(n)]

≤ Φ1 + (3.8) + (3.9)

≤ 5Φ1 +MQδλ
maxFmaxT

+2
∑

iQi(nT)
(
FmaxλmaxTM (1− pmax)D +

λmaxFmaxT 2δ + 2λmaxFmaxD + λmaxFmaxD2
)

+2
∑

iQi(nT)

(
−ϵT + T (1− pmax)

Qi(nT)−
√

Φ1
Fmax

)
.

Now we define a set W such that if M(n) ∈ W, then∑
i

Qi(nT) ≤ 2M
ϵT (5Φ1 +MQδλ

maxFmaxT

+2MT
√
Φ1 + 2MTFmax log(ϵ/4)

log(1−pmax)

)
,

where δ = ϵ
16TλmaxFmax and Qδ is the constant defined in Lemma 7.

We now choose D and T such that

D ≥
log ϵ

16MλmaxFmax

log(1− pmax)

T ≥ 32λmaxFmaxD2

ϵ
.

We can see that W is a set with a finite number of elements, and can verify that if M(n) ̸∈ W,

then

E[V (n+ 1)− V (n)|M(n)] < − ϵ

2M

∑
i

Qi(nT).

www.manaraa.com

67

Now according to the Foster’s criterion, the Markov chain is positive recurrent, and further,

limt→∞E[
∑

iQi(t)] < ∞ [13].

3.4 Simulations

In this section, we use simulations to evaluate the hybrid CA-WS algorithm and compare

its performance with the MaxWeight scheduling scheme and the CA-WS scheduling scheme.

Both the CA-WS and hybrid CA-WS algorithms in the simulations use learning to estimate

the maximum transmission rate in each channel.

We consider a network with a single base station and five channels. We further assume

there are three classes of flows (mobile users) in network. Class 1 users represent those close to

the base station. The channel conditions of class 1 users therefore are better than those of other

classes. Class 3 users represent those who are at the edge of the cell. The channel conditions

of class 3 users are the worst. Class 2 users are assumed to be located in the middle of the

cell. We assume that users in the same class experience the same channel fading, i.e., have

the same channel distributions. We further assume that each channel has two possible states

(high and low), and each of them happens with probability 0.5. The channel rate distributions

of the five channels for the three classes are shown in Table 3.1.

The flow arrival rates of the three classes follow the same Poisson distribution with rate

λ. In the simulation, we vary λ to compare the performances of different scheduling schemes

under different traffic loads. The file size of a flow follows the Pareto distribution with minimum

possible value xm = 50, and decay factor α = 2.2 A transient flow keeps injecting packets into

the base station until the complete file is transferred to the base station. The packet arrival

rate of file f is controlled by the following congestion controller [9, 10]:

Xf (t) = min

{⌈
50

Ff (t)

⌉
, 50

}
.

In the simulations, the learning period D is chosen to be 20. We name the CA-WS algorithm

with the uniform tie-breaking rule as CA-WSU.

2In the simulation, in order to see the performance of our algorithm under a general setting, we do not set
an upper bound for file size distribution and flow arrival rate distribution.

www.manaraa.com

68

Table 3.1 The distributions of channel rates

Class Channel High rate Low rate

Class 1

Channel 1 50 25

Channel 2 48 24

Channel 3 46 23

Channel 4 44 22

Channel 5 42 21

Class 2

Channel 1 40 20

Channel 2 38 19

Channel 3 36 18

Channel 4 34 17

Channel 5 32 16

Class 3

Channel 1 30 15

Channel 2 28 14

Channel 3 26 13

Channel 4 24 12

Channel 5 22 11

Simulation I: Number of Flows and File-Transfer Delay

We first consider the case where the base station does not limit the number of flows in

the network. From the base station’s perspective, it wants to minimize the total number of

flows to reduce the buffer occupancy and computation complexity. From a user’s perspective,

the user wants to have small file-transfer delay. Therefore, we use simulations to compare the

average numbers of flows in the network and the average file-transfer delays under the three

scheduling algorithms.

The results are shown in Figure 3.5 and 3.6. We can see that when traffic load is light (i.e.,

λ is small), the hybrid CA-WSU algorithm and the MaxWeight have similar performance, while

the CA-WSU algorithm has much higher delays. The reason is that the CA-WSU scheme starts

to serve a flow only after the complete file is received at the base station, which significantly

increases the file-transfer delay. When λ is large, the file-transfer delay of the MaxWeight

algorithm becomes very large. This is because the MaxWeight is not throughput optimal.

Interestingly, the hybrid CA-WSU algorithm also performs much better than the CA-WSU

algorithm even when λ is large. Specifically, the average number of flows and file-transfer delay

of the hybrid CA-WSU algorithm with λ = 0.48 are smaller than those under the MaxWeight

www.manaraa.com

69

or the CA-WSU algorithms with λ = 0.4.

0 0.06 0.12 0.18 0.24 0.3 0.36 0.42 0.48
0

12

24

36

48

60

72

84

96

108

120

Arrival rate λ (flows per time slot)

A
ve

ra
ge

 n
um

be
r

of
 fl

ow
s

CA−WSU
MaxWeight
Hybrid CA−WSU

Figure 3.5 The average numbers of flows under the CA-WSU, hybrid
CA-WSU and MaxWeight algorithms

0 0.06 0.12 0.18 0.24 0.3 0.36 0.42 0.48
0

12

24

36

48

60

72

84

96

108

120

Arrival rate λ (flows per time slot)

A
ve

ra
ge

 fi
le

−
tr

an
sf

er
 d

el
ay

 (
tim

e
sl

ot
s

pe
r

flo
w

)

CA−WSU
MaxWeight
Hybrid CA−WSU

Figure 3.6 The average file-transfer delays under the CA-WSU, hybrid
CA-WSU and MaxWeight algorithms

Simulation II: Blocking probability of three algorithms

In practical systems, the base station can only support a finite number of mobiles at any

given time slot. In this simulation, we assume the base station can accommodate at most 50

flows simultaneously. New flows are blocked if the number of flows in the network already

reaches 50. We use the blocking probability as the performance metric to compare the three

scheduling algorithms.

The result is shown in Figure 3.7. We can see under a small λ, all three algorithms

have small blocking probabilities. However, when λ = 0.5, the blocking probability of the

hybrid CA-WSU is only 6%, while the blocking probability of the MaxWeight algorithm is

www.manaraa.com

70

around 20% and the blocking probability of the CA-WSU algorithm is around 40%. Thus, our

algorithm which was designed for throughput optimality assuming no limit on the number of

simultaneous flows in the network also performs well in situations where the number of allowed

flows is limited.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.06

0.12

0.18

0.24

0.3

0.36

0.42

Arrival rate λ (flows per time slot)

B
lo

ck
in

g
pr

ob
ab

ili
ty

CA−WSU
MaxWeight
Hybrid CA−WSU

Figure 3.7 The blocking probabilities of the CA-WSU, the hybrid
CA-WSU and MaxWeight algorithms

3.5 Conclusion

In this chapter, we have developed a hybrid channel assignment and workload-based schedul-

ing algorithm that is throughput optimal for multichannel downlink wireless networks in the

presence of flow-level dynamics. The algorithm has been proved to be throughput optimal

and the performance, including delay and blocking probability, has been shown to be much

superior to other alternatives.

www.manaraa.com

71

CHAPTER 4. Joint Congestion Control and Scheduling in Wireless

Peer-to-peer Networks

In wireless peer-to-peer networks, a pair of nodes communicate directly with each other. All

transmissions are single-hop. This communication pattern is more efficient compared to that

in cellular networks because the transmission of each packet no longer needs to go through two

hops, i.e., the uplink and downlink. In wireless peer-to-peer networks, the admission control

and medium access control are very important because concurrent transmissions can cause

severe interference if not arranged wisely. We assume there is a central controller in wireless

peer-to-peer networks, which schedules transmissions in each time slot, and our objective is

designing a joint congestion control and scheduling algorithm which maximizes the network

welfare while satisfying the delay constraints of traffic.

4.1 Network Model

In this section we describe the model we propose for a network that has message requests

subject to deadline constraints. The network is located in a bounded region R, where at the

beginning of each frame, multiple communication requests occur in the network. A commu-

nication request is from one location of the region to another location. The request either

gets fulfilled during that frame, or gets dropped due to deadline expiration. In this network,

all flows are finite-sized messages with strict deadlines, so resource allocation algorithms de-

signed for persistent flows cannot be used. To effectively schedule these real-time messages, we

propose to partition R into subregions that share similar interference and channel conditions.

This will allow us to pose the problem as a long-term optimization problem, where we can

maximize the total network utility.

www.manaraa.com

72

Traffic requests are assumed to originate in a region R that we divide in M disjoint sub-

regions {ri}i∈M, i.e., ri ∩ rj = ∅ for all i ̸= j ∈ M def
= {1, . . . ,M} and ∪i∈Mri = R. Thus,

to specify a flow, we must specify the region where the source node is and the region where

the destination is. These regions are also used to define the interference constraints, which

we represent by the interference graph G = {V, E}, where V is the set of vertices and E is

the set of edges. Formally, V def
= {v = (ri, rj) : ri, rj ∈ R for i, j ∈ M} denotes any pair of

regions such that the source node is in ri and the destination is in rj , and if (v1, v2) ∈ E , where

v1 = (ri1, rj1), v2 = (ri2, rj2), then a flow with source in ri1 and destination in rj1 cannot be

scheduled to transmit simultaneously with a flow with source in ri2 and destination in rj2.

We assume that time is divided in slots, and a set of T consecutive time slots is called a

frame. Every message is assumed to be comprised of a single, fixed-size packet such that the

packet can be transmitted in a time slot and has a deadline of T slots. Furthermore, it is

assumed that all packets arrive at the beginning of the frame.

Let a = (aij)i,j∈M denote the number of real-time messages that arrive at region ri destined

for region rj at the beginning of a given frame. We assume that aij is a random variable with

mean λij and variance σ2
ij , that is independent between different frames, and is such that

Pr(aij = 0) > 0 and Pr(aij = 1) > 0. The last assumption is to guarantee that the Markov

chain we define later is both irreducible and aperiodic, but it can be substituted by other

similar assumptions.

Depending on the wireless technology used, we can have some channel feedback before

or after a transmission occurs, either in the form of channel estimation or receiver feedback,

respectively. Furthermore, we can define different channel models depending on whether the

receivers acknowledge reception of all the packets at the end of the frame, or if acknowledgments

are received after each transmission.

In this chapter we assume that the potential number of packets that can be transmitted

from region ri destined for region rj in a given time slot is denoted by c = (cij)i,j∈M. We

assume that the channel state cij is a Bernoulli random variable, is known at the beginning of

the frame, and remains constant for the entire frame. Furthermore, we assume that the channel

www.manaraa.com

73

state is independent between different frames and independent of arrivals. This channel model

corresponds to the case when we do channel estimation before transmissions occur. We use this

model because it allow us to explain the main ideas behind our algorithm in the simplest way.

The other cases have a development similar in nature and are thus omitted. The interested

reader is referred to [24] for a related problem where these different channel models are studied

in further detail, and it is shown how different channel models affect scheduling.

Denote by q = (qij)i,j∈M the minimum fraction of packets that need to be served originating

in region ri destined for region rj , and by Uij(qij) the utility function associated with such

fraction. Furthermore, we assume that the function Uij() is concave.

We denote by s = (sijt)i,j∈M,t∈T the schedule at any given frame, where sijt indicates the

number of packets scheduled for service from region ri to region rj in time slot t ∈ T def
=

{1, . . . , T}. Furthermore, we consider only schedules that fulfill all interference constraints,

that is, if si1j1t > 0 and si2j2t > 0 for any given time slot t, then it must be the case that

(v1, v2) /∈ E , where v1 = (ri1, rj1), v2 = (ri2, rj2). Since the number of available messages and

the channel state determine the maximum number of packets that can be scheduled, we have

the following constraints in the schedule:

∑
t∈T

sijt ≤ aij for all i, j ∈ M (4.1)

sijt ≤ cij for all i, j ∈ M, t ∈ T (4.2)

We will denote by S(a, c) the set of feasible schedules for fixed arrivals and channel state,

subject to (4.1), (4.2) and the interference constraints given by graph G.

4.2 Optimization Formulation

We now present a static optimization problem which will be the base to design a dynamic

algorithm using a dual decomposition approach.

Our goal is to find a scheduling policy Pr(s|a, c), which is the probability of using schedule

s ∈ S(a, c) when the arrivals are a and the channel state is c. Thus, the expected service for

www.manaraa.com

74

requests with source in region ri and destination in rj , µij(a, c), has the following constraint

µij(a, c) ≤
∑

s∈S(a,c)

∑
t∈T

sijtPr(s|a, c),

and the overall expected service is given by

µij =
∑
a,c

µij(a, c)Pr(a)Pr(c).

For notational simplicity, define the capacity region for fixed arrivals and channel state as

C(a, c) def
=

 (µ̄ij)i,j∈M : there exists s̄ ∈ S(a, c)CH,

µ̄ij ≤
∑

t∈T s̄ijt for all i, j ∈ M

 ,

where S(a, c)CH is the convex hull of S(a, c). Similarly, if we define the overall capacity of the

network as C def
=  (µij)i,j∈M : there exists µ̄(a, c) ∈ C(a, c)

for all a, c and µij = E[µ̄ij(a, c)] for all i, j ∈ M


then we have that µ

def
= (µij)i,j∈M ∈ C.

From the definition of qij we have the constraint

λijqij ≤ µij for all i, j ∈ M.

In other words, the service rate has to be larger than the minimum number of packets that

need to be served.

Since each traffic flow is a real-time message, we cannot define a long-term utility for a flow.

However, we can define utility functions for subregions. The goal is therefore to allocate the

communication resource fairly to subregions instead of users. The type of fairness is defined

by the selected utility function. So, the problem is formulated as follows:

max
µ∈C,0≤qij≤1

∑
i,j∈M

Uij(qij) (4.3)

subject to

λijqij ≤ µij for all i, j ∈ M.

We will denote the optimal solution by µ∗, q∗.

www.manaraa.com

75

4.3 A Duality Theory Approach

Using duality theory, we will show how to solve the optimization problem by solving a set

of related subproblems. This problem decomposition will be the basis for the online algorithm

that we will present in the next section.

The associated dual function [25] for (4.3) is

D(δ)
def
= max

µ∈C,0≤qij≤1

∑
i,j∈M

Uij(qij)− δij(λijqij − µij).

Since the utility function is concave, and the constraints are affine functions, Slater’s condition

[26] implies that the duality gap is zero and therefore D(δ∗) =
∑

i,j∈M
Uij(q

∗
ij), where

δ∗ ∈ argmin
δij≥0

D(δ)

and q∗ is the solution to (4.3). Furthermore, to solve the optimization problem using the dual

function, we note that we can simply solve the following subproblems

max
0≤qij≤1

Uij(qij)− δijλijqij

and

max
µ∈C

∑
i,j∈M

δijµij . (4.4)

Since δij ≥ 0 for all i, j ∈ M, the optimization in (4.4) has a linear objective, and the

service rate is a convex combination of the feasible schedules, we can further decompose (4.4)

as follows

max
s∈S(a,c)

∑
i,j∈M

δij
∑
t∈T

sijt.

We can then use the following iterative algorithm to find the solution to our optimization

problem, where k is the step index:

q̃∗ij(k) ∈ argmax
0≤qij≤1

Uij(qij)− δij(k)λijqij

and

s̃∗(a, c, k) ∈ argmax
s∈S(a,c)

∑
i,j∈M

δij(k)
∑
t∈T

sijt,

www.manaraa.com

76

with update equation

δij(k + 1) = {δij(k) + ϵ[λij q̃
∗
ij(k)− µ̃∗

ij(k)]}+,

step-size parameter ϵ > 0 and

µ̃∗
ij(k)

def
=
∑
a,c

∑
t∈T

s̃∗ijt(a, c, k)Pr(a)Pr(c).

Using the change of variables ϵd̂ij(k) = δij(k) we can rewrite the problem as

q̃∗ij(k) ∈ argmax
0≤qij≤1

1

ϵ
Uij(qij)− d̂ij(k)λijqij

and

s̃∗(a, c, k) ∈ argmax
s∈S(a,c)

∑
i,j∈M

d̂ij(k)
∑
t∈T

sijt,

with update equation

d̂ij(k + 1) = [d̂ij(k) + λij q̃
∗
ij(k)− µ̃∗

ij(k)]
+.

It must be noted that given the update equation of q̃∗ij(k), we can give a controller interpretation

to it, where we regulate the minimum service we give to traffic requests. Similarly, d̂ij(k)

can have a queue interpretation, with the the number of arrivals given by λij q̃
∗
ij(k) and the

departures given by µ̃∗
ij(k).

4.4 Online Algorithm

In this section we first present our online algorithm and subsequently we present its per-

formance analysis.

4.4.1 Scheduler and Service Controller

We propose to use the following scheduler when the arrivals and channel state at frame k

are given by a(k) and c(k), respectively:

s̃∗(a(k), c(k), d(k)) ∈ argmax
s∈S(a(k),c(k))

∑
i,j∈M

dij(k)
∑
t∈T

sijt, (4.5)

www.manaraa.com

77

and the following service controller

q̃∗ij(a(k), d(k)) ∈

argmax
0≤qij≤1

1

ϵ
Uij(qij)− dij(k)aij(k)qij . (4.6)

In the notation we make explicit the fact that the scheduler and the service controller are a

function of the arrivals, the channel state, and the parameter d(k).

We need to translate the minimum service to message requests, which is a fraction, into a

minimum number of packets that need to be served. This conversion can be made in different

ways: we assume that the minimum number of packets to be served at region ri destined to

region rj , ãij(k), are a binomial random variable with parameters aij(k) and q̃∗ij(a(k), d(k)).

The quantity ãij(k) can be generated by the network as follows: for every message request,

flip a coin with probability of heads equal to q̃∗ij(a(k), d(k)), and let ãij(k) be the number of

heads that we get.

The update equation for d(k) is given by

dij(k + 1) = [dij(k) + ãij(k)− Ĩ∗ij(a(k), c(k), d(k))]
+,

where

Ĩ∗ij(a(k), c(k), d(k))
def
=
∑
t∈T

s̃∗ijt(a(k), c(k), d(k)).

We interpret the parameter dij(k) as a virtual queue that keeps track of the deficit in service

for traffic requests from region ri to region rj , given the minimum service allocated by our

controller.

4.4.2 Performance Analysis

We will first bound the expected drift of the Markov chain d(k) for a suitable Lyapunov

function. For the sake of readability, we will defer the proofs to Section 4.6.

Lemma 9. Consider the Lyapunov function V (d) = 1
2

∑
i,j∈M d2ij. If there exists µ̃ ∈ C and

0 ≤ q̃ij ≤ 1 for all i, j ∈ M such that

λij q̃ij < µ̃ij for all i, j ∈ M (4.7)

www.manaraa.com

78

then

E [V (d(k + 1))|d(k) = d]− V (d) ≤ B1 −B2

∑
i,j∈M

dij

− 1

ϵ

∑
i,j∈M

{
Uij(q̃ij)− E

[
Uij(q̃

∗
ij(a(k), d))

]}

for some positive constants B1, B2, any ϵ > 0, where q̃∗(a(k), d) is the solution to (4.6). ⋄

Since d(k) defines an irreducible and aperiodic Markov chain, and the last term of the right

hand side of the inequality can be bounded, Lemma 9 implies that d(k) is positive recurrent

since the expected drift is negative but for a finite set of values of d(k). Thus, a direct

consequence of Lemma 9 is the fact that the total service deficit has an O(1ϵ) bound.

Corollary 10. If there exists µ̃ ∈ C, 0 ≤ q̃ij ≤ 1 for all i, j ∈ M such that (4.7) is true, then

the total expected service deficit is upper-bounded by

lim sup
k→∞

E

 ∑
i,j∈M

dij(k)

 ≤ B3 +
1

ϵ
B4,

where B3 = B1/B2 and

B4 ≤
∑

i,j∈Mmax0≤qij≤1 2|Uij(qij)|
B2

.

⋄

Before we can prove that our algorithm can achieve the optimal value of (4.3) in some

stochastic sense, we need a related result to Lemma 9.

Lemma 11. Consider the Lyapunov function V (d) = 1
2

∑
i,j∈M d2ij. Then

E [V (d(k + 1))|d(k) = d]− V (d) ≤ B1 −B2

∑
i,j∈M

dij

− 1

ϵ

∑
i,j∈M

{
Uij(q

∗
ij)− E

[
Uij(q̃

∗
ij(a(k), d))

]}

www.manaraa.com

79

for B1 > 0, some nonnegative constant B2, any ϵ > 0, where q∗ is the solution to (4.3) and

q̃∗(a(k), d) is the solution to (4.6). Furthermore, if λijq
∗
ij < µ∗

ij for all i, j ∈ M then B2 > 0.

⋄

The difference between Lemma 9 and Lemma 11 is that Lemma 11 does not guarantee that

the Markov chain is positive recurrent, but it allows us to compare the expected drift to the

optimal solution. The proof technique is identical to the proof for Lemma 9, so it is omitted.

With this result, we can now prove that our algorithm is within O(ϵ) of the optimal value.

Theorem 12. For any ϵ > 0 we have that

lim sup
K→∞

∑
i,j∈M

{
Uij(q

∗
ij)

−Uij

(
E

[
1

K

K∑
k=1

q̃∗ij(a(k), d(k))

])}
≤ Bϵ

for some B > 0, where q∗ is the solution to (4.3) and q̃∗(a(k), d(k)) is the solution to (4.6). ⋄

From Corollary 10 and Theorem 12 we observe that there is a tradeoff when choosing ϵ,

since the more we approach the optimal solution, the larger the total deficit counters will be.

The statement and proofs of Lemma 9 and Theorem 12 follow the techniques in [27],

which are similar to the techniques in [28]. Slightly different results can be derived using the

techniques in [29] and [30].

4.5 A Different Utility Function

In the previous sections we assumed that the utility is a function of the minimum fraction

of packets that need to be served. If we assume instead that the utility is a function of the

minimum rate of packets that need to be served, the algorithm needs to be slightly modified.

Since the analysis is similar, in this section we will only highlight the differences and present

the main results without proof. Later in Section 4.7 we will present a simulation-based study

to show how the choice of the utility function can considerably affect users’ behavior.

Denote by x = (xij)i,j∈M the minimum rate of packets that need to be served originating

in region ri that are destined for region rj . The utility function associated with such rate is

www.manaraa.com

80

denoted by Uij(xij), and we assume that Uij() is concave. Thus, we have that the constraint

for the overall expected service is now given by

xij ≤ µij for all i, j ∈ M.

Given that we want to maximize the total network utility, the problem is formulated as

follows:

max
µ∈C,xij≥0

∑
i,j∈M

Uij(xij) (4.8)

subject to

xij ≤ µij for all i, j ∈ M.

We will denote the optimal solution by µ∗, x∗.

Using the decomposition approach presented in Section 4.3, we can develop the following

online algorithm, where the arrivals and channel state at frame k are given by a(k) and c(k).

The scheduler is given by

s̃∗(a(k), c(k), d(k)) ∈ argmax
s∈S(a(k),c(k))

∑
i,j∈M

dij(k)
∑
t∈T

sijt,

and the service controller is

x̃∗ij(d(k)) ∈ argmax
0≤xij≤T

1

ϵ
Uij(xij)− dij(k)xij . (4.9)

To convert x̃∗ij(d(k)) into a minimum number of packets that need to be served, we define the

integer-valued random variable ãij(k) such that E[ãij(k)] = x̃∗ij(d(k)), its variance is upper-

bounded by σ2, and is such that Pr(ãij(k) = 0) > 0, Pr(ãij(k) = 1) > 0. The last two

assumptions are used to guarantee that the Markov chain d(k) is both irreducible and aperiodic,

but can be substituted by similar assumptions.

The update equation for d(k) is given by

dij(k + 1) = [dij(k) + ãij(k)− Ĩ∗ij(a(k), c(k), d(k))]
+,

where

Ĩ∗ij(a(k), c(k), d(k))
def
=
∑
t∈T

s̃∗ijt(a(k), c(k), d(k)).

www.manaraa.com

81

As we did before, let dij(k) be interpreted as a virtual queue that keeps track of the deficit in

service for traffic requests from region ri to region rj , given the minimum service allocated by

our controller.

For this algorithm we have that the expected drift of the Markov chain d(k) for a suitable

Lyapunov function is given by the following lemma.

Lemma 13. Consider the Lyapunov function V (d) = 1
2

∑
i,j∈M d2ij. If there exists µ̃ ∈ C,

x̃ij ≥ 0 for all i, j ∈ M such that

x̃ij < µ̃ij for all i, j ∈ M (4.10)

then

E [V (d(k + 1))|d(k) = d]− V (d) ≤ B1 −B2

∑
i,j∈M

dij

− 1

ϵ

∑
i,j∈M

{
Uij(x̃ij)− E

[
Uij(x̃

∗
ij(d))

]}

for some positive constants B1, B2, any ϵ > 0, where x̃∗(d) is the solution to (4.9). ⋄

Lemma 13 implies that the total service has an O(1ϵ) bound, as was proved in Section 4.4.2

for Lemma 9. We can also prove that the algorithm is within O(ϵ) of the optimal value.

Theorem 14. For any ϵ > 0 we have that

lim sup
K→∞

∑
i,j∈M

{
Uij(x

∗
ij)

−Uij

(
E

[
1

K

K∑
k=1

ã∗ij(k)

])}
≤ Bϵ

for some B > 0, where x∗ is the solution to (4.8) and ã∗(k) is given by the solution to (4.9). ⋄

4.6 Proofs

4.6.1 Proof of Lemma 9

We start proving Lemma 9 by presenting the following fact.

www.manaraa.com

82

Fact 1. The optimization in (4.5) can be performed over S(a(k), c(k))CH, the convex hull of

S(a(k), c(k)); that is,

max
s∈S(a(k),c(k))

∑
i,j∈M

dij(k)
∑
t∈T

sijt =

max
s∈S(a(k),c(k))CH

∑
i,j∈M

dij(k)
∑
t∈T

sijt.

The reason for this comes from the fact that the objective function is linear and therefore there

must be an optimal point s̃∗(a(k), c(k), d(k)) ∈ S(a(k), c(k)). ⋄

www.manaraa.com

83

Proof of Lemma 9.

E [V (d(k + 1))|d(k) = d]− V (d)

=E

1
2

∑
i,j∈M

{[dij + ãij(k)− Ĩ∗ij(a(k), c(k), d)]
+}2


− 1

2

∑
i,j∈M

d2ij

≤E

1
2

∑
i,j∈M

[dij + ãij(k)− Ĩ∗ij(a(k), c(k), d)]
2


− 1

2

∑
i,j∈M

d2ij

=E

 ∑
i,j∈M

dij [ãij(k)− Ĩ∗ij(a(k), c(k), d)]

+
1

2

∑
i,j∈M

[ãij(k)− Ĩ∗ij(a(k), c(k), d)]
2


≤E

 ∑
i,j∈M

dij ãij(k)− dij Ĩ
∗
ij(a(k), c(k), d)

+
1

2

∑
i,j∈M

ã2ij(k) + a2ij(k)

 (4.11)

≤E

 ∑
i,j∈M

dij ãij(k)− dij Ĩ
∗
ij(a(k), c(k), d) + a2ij(k)

 (4.12)

=B1 + E

 ∑
i,j∈M

dijaij(k)q̃
∗
ij(a(k), d)

−dij Ĩ
∗
ij(a(k), c(k), d)

]
=B1 − E

 ∑
i,j∈M

1

ϵ
Uij(q̃

∗
ij(a(k), d))− dijaij(k)q̃

∗
ij(a(k), d)

+dij Ĩ
∗
ij(a(k), c(k), d)−

1

ϵ
Uij(q̃

∗
ij(a(k), d))

]

www.manaraa.com

84

where (4.11) and (4.12) follow from the definition of Ĩ∗ij(a(k), c(k), d) and ãij(k), respectively,

and

B1 =
∑

i,j∈M
λ2
ij + σ2

ij .

From the definition of C, µ̃ ∈ C implies that there exist µ̃(a, c) ∈ C(a, c) for all a, c and

µ̃ij = E[µ̃ij(a, c)] for all i, j ∈ M. For the rest of the proof we define µ̃ij(a, c) to be such set

of values associated to µ̃. Thus:

E [V (d(k + 1))|d(k) = d]− V (d)

≤B1 − E

 ∑
i,j∈M

1

ϵ
Uij(q̃ij)− dijaij(k)q̃ij (4.13)

+dijµ̃ij(a(k), c(k))−
1

ϵ
Uij(q̃

∗
ij(a(k), d))

]
=B1 −

∑
i,j∈M

dij(µ̃ij − λij q̃ij)

− 1

ϵ

∑
i,j∈M

{
Uij(q̃ij)− E

[
Uij(q̃

∗
ij(a(k), d))

]}
≤B1 −B2

∑
i,j∈M

dij

− 1

ϵ

∑
i,j∈M

{
Uij(q̃ij)− E

[
Uij(q̃

∗
ij(a(k), d))

]}
where (4.13) follows from the fact that Ĩ∗ij(a(k), c(k), d) and q̃∗ij(a(k), d) are the solutions to

(4.5) and (4.6), respectively, and Fact 1. Furthermore,

B2 = min
i,j∈M

{µ̃ij − λij q̃ij} .

www.manaraa.com

85

4.6.2 Proof of Theorem 12

From Lemma 11 we have

1

ϵ

∑
i,j∈M

{
Uij(q

∗
ij)− E

[
Uij(q̃

∗
ij(a(k), d))

]}
≤B1 −B2

∑
i,j∈M

dij − E [V (d(k + 1))|d(k) = d] + V (d)

≤B1 − E [V (d(k + 1))|d(k) = d] + V (d).

The last inequality follows from the fact that B2
∑

i,j∈M dij ≥ 0. Taking expectations we

obtain

1

ϵ

∑
i,j∈M

{
Uij(q

∗
ij)− E

[
Uij(q̃

∗
ij(a(k), d(k)))

]}
≤B1 − E [V (d(k + 1))] + E [V (d(k))] .

If we add the terms for k = {1, . . . ,K} and divide by K we obtain

1

ϵ

∑
i,j∈M

{
Uij(q

∗
ij)− E

[
1

K

K∑
k=1

Uij(q̃
∗
ij(a(k), d(k)))

]}

≤B1 −
E [V (d(K + 1))]

K
+

E [V (d(1))]

K

≤B1 +
E [V (d(1))]

K
,

where the last inequality follows from the fact that the Lyapunov function is non-negative.

Using Jensen’s inequality [26] we get the following

1

ϵ

∑
i,j∈M

{
Uij(q

∗
ij)− Uij

(
E

[
1

K

K∑
k=1

q̃∗ij(a(k), d(k))

])}

≤1

ϵ

∑
i,j∈M

{
Uij(q

∗
ij)− E

[
1

K

K∑
k=1

Uij(q̃
∗
ij(a(k), d(k)))

]}

≤B1 +
E [V (d(1))]

K
.

www.manaraa.com

86

Taking the limit as K → ∞, and assuming E [V (d(1))] < ∞, we get

lim sup
K→∞

∑
i,j∈M

{
Uij(q

∗
ij)

− Uij

(
E

[
1

K

K∑
k=1

q̃∗ij(a(k), d(k))

])}
≤ Bϵ,

where B = B1. �

4.7 Simulations

In this section, we first compare our algorithm against the solution proposed in [27] for

scheduling persistent real-time traffic and show the limitations of that approach to handle

real-time messages for providing fairness. Then we study how the choice of the utility function

in our algorithm can affect the behavior of users, giving them incentives either to achieve

load-balancing or to create hotspots.

4.7.1 On the Limitations of a Previous Approach

We now compare the algorithm introduced in Section 4.4.1 against the scheduler proposed

in [27] for handling persistent real-time traffic. Since the algorithm is an extension to the

MaxWeight scheduler for real-time traffic, in this chapter we will call it the real-time MaxWeight

algorithm, while we will call our algorithm the fraction-based algorithm.

4.7.1.1 Simulation settings

We divide the region where traffic is generated in two subregions. In other words, M =

{1, 2}. There are 80 users in the network, where 40 users are located in subregion 1, and

40 users are in subregion 2. Each frame consists of 4 time slots, i.e., T = 4. We assume the

channel between any two regions is always on, in other words, cij = 1 for all i, j ∈ M. At every

frame each user generates a message with probability Pm, where the destination is randomly

selected. We will denote by (i, j) the set of transmission requests with source in region ri and

destination in rj , for i, j ∈ M. Thus, the aggregate number of message requests in (i, j) will

determine aij . The interference graph for our simulations is given by Fig. 4.1, where each

www.manaraa.com

87

1,2 2,1

2,2

1,1

Figure 4.1 Interference graph used in the simulations

0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Message Probability (P
m

)

T
h

ro
u

g
h

p
u

t
[=

]
P

a
c
k
e

ts
/F

ra
m

e

(1,1)

(2,2)

(1,2)

(2,1)

Figure 4.2 Throughput for the Fraction-based algorithm

vertex represents any pair of regions, and an edge joins them if they cannot simultaneously

transmit. For example, only transmissions (1, 1) and (2, 2) can be simultaneously scheduled

without interfering with each other. In the simulations, we assume the utility function is α-

fair, i.e., Uij(qij) =
q1−α
ij

1−α . For the fraction-based algorithm, we set ϵ = 0.1 and α → 1, which

corresponds to the limit case of proportional fairness.

4.7.1.2 Results

To compare both algorithms, we measure the throughput, which is defined to be the number

of packets that are successfully transmitted per frame for every region pair (i, j). In Figs.

4.2 and 4.3 we observe that while the fraction-based algorithm tries to fairly allocate the

throughput among different region pairs, the real-time MaxWeight algorithm disproportionally

gives preference to intraregion transmissions, starving cross-region transmissions.

To understand this behavior, note that the real-time MaxWeight algorithm uses as weights

www.manaraa.com

88

0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Message Probability (P
m

)

T
h

ro
u

g
h

p
u

t
[=

]
P

a
c
k
e

ts
/F

ra
m

e

(1,1)

(2,2)

(1,2)

(2,1)

Figure 4.3 Throughput for the Real-time MaxWeight algorithm

the deficit in service for every flow. Since each traffic request consists of a single packet, then

no flow has a deficit that allows it to gain priority in a schedule. Thus, for the case of real-

time messages, the real-time MaxWeight algorithm becomes the maximal matching algorithm,

giving priority to intraregion transmissions since this maximizes the number of links that

can be simultaneously scheduled. Therefore, in order to maximize throughput, the real-time

MaxWeight algorithm allocates service with no fairness considerations into account.

To explore the tradeoff between maximizing throughput and guaranteeing fairness, we

measured the total network throughput for both algorithms, and the results are presented in

Fig. 4.4. As it can be seen, for larger arrival rates the difference in both algorithms starts to

increase since the real-time MaxWeight algorithm schedules more intraregion transmissions.

Hence, in order to achieve proportional fairness we have to pay a price in terms of total network

throughput.

Another way to explore the throughput-fairness tradeoff is by increasing the value of α.

Note that α → ∞ corresponds to the limit case of max-min fairness, where the algorithm tries

to maximize the minimum fraction of service allocated to any given region pair. In Fig. 4.5 we

plot the total network throughput when Pm = 0.2. As can be seen, the minimum throughput

between different region pairs starts to increase with increasing α, but as can be observed in

Fig. 4.6 we have to pay a price in terms of a small decrease in total network throughput, since

we are sacrificing efficiency for fairness.

www.manaraa.com

89

0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3
0

2

4

6

8

Message Probability (P
m

)

T
o

ta
l
T

h
ro

u
g
h

p
u

t
[=

]
P

a
c
k
e

ts
/F

ra
m

e

Real−time MaxWeight

Fraction−based

Figure 4.4 Comparison of total network throughput

1 2 3 4 5 6 7 8
0

0.5

1.0

1.5

2.0

α

T
h
ro

u
g
h
p
u
t
[=

]
P

a
c
k
e
ts

/F
ra

m
e

(1,1)

(2,2)

(1,2)

(2,1)

Figure 4.5 Throughput for the Fraction-based algorithm when α varies

4.7.2 The Effect on Users’ Behavior of the Utility Function

So far, our work has studied how to schedule real-time messages when the traffic densities

in every region are fixed. In this section we complement our theoretical work by studying how

the choice of the utility function can affect the behavior of users, giving them incentives either

to achieve load-balancing or to create hotspots. To do that, we will study a simulation model

where the users are in any given region according to some probability distribution, and we

allow users to modify such distribution in order to increase their own throughput. With this

simple model we try to understand the decision-making process of users and how they react

to the quality of service they receive from the network.

www.manaraa.com

90

1 2 3 4 5 6 7 8
5.0

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6.0

α

T
o

ta
l
T

h
ro

u
g
h

p
u

t
[=

]
P

a
c
k
e

ts
/F

ra
m

e

Figure 4.6 Total throughput for the Fraction-based algorithm

4.7.2.1 Simulation Settings

The settings for this section are the same as in Section 4.7.1, with the following changes.

We let Pm to be 0.1, and we assume that users are in region 1 with probability 0.8 and in

region 2 otherwise. After a random amount of time, each user decides to either continue using

the same probability distribution or change it to the inverse, that is, to stay in region 1 with

probability 0.2. We assume that the time for our algorithm to converge to the optimal solution

is much smaller than the time for an user to decide whether to keep or change its distribution.

In other words, we assume there is a time-scale separation between the users and the algorithm.

This assumption is reasonable since in practice the behavior of users is much slower than the

convergence time of the scheduling algorithm.

4.7.2.2 Results

In the first part of the simulations we set α = 5 and compare the fraction-based algorithm,

with service controller given by (4.6), against the service controller in (4.9), where the utility

is a function of the minimum rate of packets that need to be served instead of the minimum

fraction of packets that need to be served. We will call the second controller the rate-based

algorithm.

We allow users to modify their probability distribution after a random amount of time,

and we let the simulations run until we get the steady-state behavior of the network, which in

www.manaraa.com

91

First frame Last frame

Figure 4.7 Users’ location under the Fraction-based algorithm when α = 5

First frame Last frame

Figure 4.8 Users’ location under the Rate-based algorithm when α = 5

this case is after 2 million frames. In Figs. 4.7 and 4.8 we plot the geographical location of

users in the first and last frame of the simulations. It can be noted that for the fraction-based

algorithm roughly half of the users are in each region while for the rate-based algorithm 80%

of the users stay in region 1, compared to the distribution of users in the first frame, where

80% of the users stay in region 1. The steady-state distribution of users’ location is shown in

Table 4.1.

Thus, we observe that the fraction-based algorithm allocates service such that users tend to

modify their behavior in such a way that the system achieves load balancing between different

regions, and that the rate-based algorithm assigns service in a way that users do not have

an incentive to modify their behavior, creating hotspots. This difference in behavior is also

www.manaraa.com

92

Table 4.1 The steady-state distribution of users’ location when α = 5
Subregion Fraction-based Rate-based

1 50.26% 79.99%

2 49.74% 20.01%

Table 4.2 Total network throughput when α = 5
Fraction-based Rate-based

4.70 4.25

reflected in the total network throughput, as shown in Table 4.2. As expected, when the system

achieves load balancing it gets higher throughput compared when it does not.

For the case where α = 1, the results are quite different. In Figs. 4.9 and 4.10 we plot

the users’ location for the first and the last frame of the simulations, while the steady-state

distribution of users’ location is shown in Table 4.3. As can be seen, both algorithms start

with a distribution of users in the first frame such that 80% of the users stay in region 1, but

at the end of the simulations they achieve load balancing.

The data implies that when α = 1, the performance of the fraction-based algorithm and the

rate-based algorithm are equivalent. As we can see in Sections 4.4.1 and 4.5, the only difference

between the two algorithms is the service controller. For the fraction-based algorithm, when

the utility function is α-fair, we can analytically solve the optimization problem (4.6) such that

q̃∗ij(a(k), d(k)) =

[
1

ϵaij(k)dij(k)

] 1
α

if
[

1
ϵaij(k)dij(k)

] 1
α ≤ 1. For the rate-based algorithm, when the utility function is α-fair, we can

also solve the optimization problem (4.9) such that

x̃∗ij(d(k)) =

[
1

ϵdij(k)

] 1
α

if
[

1
ϵdij(k)

] 1
α ≤ T . It is easy to see that when α → 1, both algorithms allocate the same

minimum rate of packets to be served.

www.manaraa.com

93

First frame Last frame

Figure 4.9 Users’ location under the Fraction-based algorithm when α = 1

First frame Last frame

Figure 4.10 Users’ location under the Rate-based algorithm when α = 1

4.8 Conclusion

In this chapter we have studied the problem of service allocation and scheduling of real-

time message requests under strict per-packet deadline constraints. We have presented an

optimization framework that groups message requests by regions with similar interference and

channel conditions, allowing us to design a solution that optimally allocates resources in the

long term while meeting delay constraints. The solution allows for very general interference

and arrival models. Using simulations we have showed the limitiations of previous approaches

and why there is a need to develop a new solution to the problem we considered.

We have also explored the impact of the choice of the utility function on the mobility

patterns of users, and have showed how different utilities lead to incentives that either help

www.manaraa.com

94

Table 4.3 The steady-state distribution of users’ location when α = 1
Subregion Fraction-based Rate-based

1 51.80% 55.54%

2 48.20% 44.46%

achieve load balancing between regions or that create hotspots where a large number of users

concentrate.

www.manaraa.com

95

CHAPTER 5. Scheduling in Multihop Wireless Networks

In this chapter, I address scheduling in multihop wireless networks with flow-level dynamics.

Although most existing practical wireless networks consist of single-hop data transmissions,

multihop wireless networks have important applications in various areas.

A widely-used algorithm to stabilize multi-hop flows in wireless networks is the back-

pressure algorithm proposed in [3], which can stabilize any traffic flows that can be supported

by any other routing/scheduling algorithm. We refer to [9, 10] for a comprehensive survey on

the back-pressure algorithm and its variations. A key idea of the back-pressure algorithm is

to use largest queue difference as link weight, and schedule the links with largest aggregated

weights. Therefore, the back-pressure algorithm requires constant exchange of queue-length

information among neighboring nodes. Furthermore, under the back pressure algorithm, the

sum of the queue lengths along a route increases quadratically as the route length [18], which

leads to poor delay performance. The most important thing is, the back-pressure algorithm

is optimal only for the network without flow-level dynamics. When the system has flow-level

dynamics, it is no longer throughput optimal as pointed out in [1].

To address the scheduling problem in the presence of flow-level dynamics, we can think

of the nodes in wireless ad-hoc networks as “access points” (AP). Each user who wants to

transmit data should first associate with a particular AP and transmit data to it, and then

the associated AP will forward the data to the destination AP through wireless links, who

will finally dump the data to the destination user. By doing this we “translate” the flow-

level dynamics to packet-level dynamics. Now the question is, considering the drawbacks of

the back-pressure algorithm, can the network be stabilized without using back pressure? We

address this problem in a multi-hop wireless network with fixed routing in this chapter.

www.manaraa.com

96

5.1 Basic Model

We consider a network represented by a graph G = (N ,L), where N is the set of nodes

and L is the set of directed links. Let N = |N | and L = |L|. Denote by (m,n) the link from

node m to node n, which implies that node m can communicate with node n. Furthermore,

let µ = {µ(m,n)} denote a link-rate vector such that µ(m,n) is the transmission rate over link

(m,n). A link-rate vector µ is said to be admissible if the link-rates specified by µ can be

achieved simultaneously. Define Γ to be the set of all admissible link-rate vectors. It is easy

to see that Γ depends on the choice of interference model and might not be a convex set.

Furthermore, Γ is time-varying if channels are time-varying. We further assume that there

exists µmax such that µ(m,n) ≤ µmax for all (m,n) ∈ L and all admissible µ.

We consider multihop traffic flows with fixed routing in this chapter. Let f denote a flow,

and Rf denote the route associated with flow f. Denote by Sf the source node of flow f, and

Df the destination node of flow f. Further, let µf
(m,n) denote the rate at which packets of flow

f are served over link (m,n). We use F to denote the set of all flows in the network, and

F = |F|. Assume that time is discretized, and let Xf (t) (f ∈ F) denote the number of packets

injected by flow f at time t. We assume Xf (t) is independent and identical across time, and let

Xf = E[Xf (t)], which is the arrival rate of flow f . We further assume Xf (t) is upper-bounded,

i.e., Xf (t) ≤ Xmax for all f and t. Suppose Af (t) =
∑t

τ=1Xf (τ) which is the aggregated

arrival rate of flow f at time t, we assume that Af (t) satisfies the following property:

Af (s)−Af (t)

s− t
→ Xf (5.1)

as s − t → ∞. In other words, given any ϵ > 0, we can find a T such that when s − t > T ,∣∣∣Af (s)−Af (t)
s−t −Xf

∣∣∣ < ϵ for any f .

Remark: Since Af (s) − Af (t) =
∑s

τ=t+1Xf (τ), according to the Strong Law of Large

Numbers, Pr
(
Af (s)−Af (t)

s−t → Xf

)
= 1. However, the sample-path convergence still cannot

guarantee deterministic convergence as in (5.1). Therefore, we should consider (5.1) to be the

assumption of traffic arrivals, instead of the property of sum of random variables. But we want

to point out that when s− t is sufficiently large, (5.1) holds in almost-surely sense.

www.manaraa.com

97

5.2 Necessary Conditions for Stability

In this section, we study the necessary conditions for network stability. We say a traffic

configuration {Xf}f∈F is supportable if there exists {µ̄f
(m,n)}(m,n)∈L such that the following

two conditions hold:

(i) For any flow f and node n ̸= Df ,

Xf I{Sf=n} +
∑

m:(m,n)∈Rf

µ̄f
(m,n) ≤

∑
b:(n,b)∈Rf

µ̄f
(n,b), (5.2)

where I{Sf=n} equals one if Sf = n occurs and equals zero otherwise.

(ii) ∑
f∈F

µ̄f
(m,n)

 ∈ CH(Γ), (5.3)

where CH(Γ) is the convex hull of Γ.

Recall that each flow is associated with a fixed route. It is easy to see the necessary

condition (5.2) is equivalent to the following statement: For any flow f and (m,n) ∈ Rf , we

have

µ̄f
(m,n) ≥ Xf . (5.4)

5.3 Self-Regulated MaxWeight Scheduling for Multihop Wireless

Networks

In this section, we introduce the self-regulated MaxWeight scheduling for multhop wireless

networks, which is later proved to be throughput optimal.

Two-stage queue architecture: Each node maintains two types of queues: per-flow queues

and per-link queues as shown in Figure 5.1. An incoming packet is at first buffered at the cor-

responding per-flow queue and then moved to the per-link queue where the link is on the route

of the flow (the details will be described later). In this chapter, we denote by Qn
f the length of

the queue maintained at node n for flow f, and Qn
(n,b) the length of the queue maintained at

www.manaraa.com

98

Figure 5.1 The two-stage queue architecture

node n for link (n, b). Clearly, queue for link (n, b) is maintained only at node n, so we simplify

Qn
(n,b) to be Q(n,b) without causing any confusion.

Self-Regulated MaxWeight Scheduling

• MaxWeight scheduling: Compute the admissible link-rate vector µ∗(t) such that

µ∗(t) = arg max
µ(t)∈Γ

∑
(n,b)∈L

µ(n,b)(t)Q(n,b)(t). (5.5)

Note that here instead of back pressure, we use the queue lengths of per-link queues as

link weights to make scheduling decisions.

• Per-link queue transmission: Node n transmits

s(n,b)(t) , min{µ∗
(n,b)(t), Q(n,b)(t)}

packets to node b over link (n, b). The packets are deposited into per-flow queues at node

b according to their flows. We let sf(n,b)(t) denote the number of packets of flow f that

are transmitted over link (n, b) at time t. Note that

s(n,b)(t) =
∑
f

sf(n,b)(t)

always holds.

www.manaraa.com

99

• Per-flow queue transmission: Denote by anf (t) the number of packets deposited into queue

Qn
f at time slot t, i.e.,

anf (t) =
∑

(b,n)∈L

sf(b,n)(t)

for those non-source nodes, and

a
Sf

f (t) = Xf (t)

for the source node of flow f .

For each flow f, node n maintains a rate estimate

X̃n
f (t) = (1 +

1

Q(n,nf)(t)
)

∑t
τ=1 a

n
f (τ)

t
, (5.6)

where nf is the next hop of node n on the route of flow f . If Q(n,nf)(t) = 0, then let

X̃n
f (t) = (1 + γ)

∑t
τ=1 a

n
f (τ)

t
,

where γ > 1 is a positive constant we can set. At time slot t, node n moves

snf (t) , min{X̃n
f (t), Q

n
f (t)}

packets from queue Qn
f to queue Q(n,nf). We further define the packet arrivals of per-link

queues

a(n,b)(t) ,
∑

f :(n,b)∈Rf

snf (t).

Remark: Note that the rate estimate (5.6) is self-regulated. Under low traffic load, the

queue lengths of per-link queues are small, so the transfer rates from per-flow queues to

per-link queues are large to get a good performance on end-to-end packet transmission

delay. When the traffic is heavy, i.e., the queue lengths of per-link queues are large, the

rate estimate is only slightly larger than the required departure rate of per-flow queue

to guarantee the stability of the network. This scheme can stabilize the network without

sacrificing any portion of the stability region, which will be proved later.

�

www.manaraa.com

100

The intuition of this two-stage queue architecture is that, we break each multi-hop flow into

multiple single-hop flows, one for each link on the route. A scheduling policy stabilizing the

collection of single-hop flows also provides sufficient service for supporting the set of multi-hop

flows. Therefore, if each link knows the required rate for it to carry, it can simply generate

virtual packets according to the required rate and then let the network makes scheduling

decisions according to the virtual queues (per-link queues). When a virtual queue is scheduled,

real packets are served according to the allocated link rate. Note that the back pressure

scheduling becomes the MaxWeight scheduling here since all flows are single-hop. To totally

remove the network overhead, we let each node estimates the required link rate locally by

taking average over the past arrivals as in (5.6).

The notations are illustrated in Figure 5.2. From the definition of the self-regulated

MaxWeight scheduling algorithm, we can see that the dynamics of queue Qn
f and Q(n,b) are:

Qn
f (t+ 1) =

[
Qn

f (t)− snf (t)
]+

+ anf (t) (5.7)

Q(n,b)(t+ 1) =
[
Q(n,b)(t)− s(n,b)(t)

]+
+ a(n,b)(t). (5.8)

Figure 5.2 The notations and the flows

In the following, we will prove that the self-regulated MaxWeight scheduling algorithm

stabilizes any traffic within the stability region of the network. The analysis consists of two

steps: we first show that the per-link queues are bounded (Lemma 15), and then using induction

to prove that the per-flow queues are bounded as well (Lemma 16).

Lemma 15. Given a set of traffic flows such that {(1 + ϵ)Xf} is supportable for some ϵ > 0,

there exists a positive constant C > 0 such that the lengths of any per-link queue is no more

than C for all t ≥ 0.

www.manaraa.com

101

Proof. Since we are considering the asymptotic behavior of the system, we only concern about

the queue lengths when t is large. From (5.1) we know that for any given δ > 0, we can find

T (δ), such that when t > T (δ),

Af (t)

t
≤ Xf + δ,∀f.

Therefore, for any node n,
t∑

τ=1

anf (τ) ≤ Xf t+ δt,

which implies that

X̃n
f (t) ≤ (1 + min

{
γ,

1

Q(n,nf)(t)

}
) (Xf + δ) , ∀f.

Since {(1+ϵ)Xf} is supportable, according to the necessary conditions for stability, there exist

µ̄ such that

µ̄f
(m,n) ≥ (1 + ϵ)Xf

for all flow f and link (m,n) that is on the route of f. Let µ̄(m,n) =
∑

f :(m,n)∈Rf
µ̄f
(m,n), then

www.manaraa.com

102

for any link (m,n) ∈ L, we can conclude that

a(m,n)(t) =
∑

f :(m,n)∈Rf

X̃m
f (t)

≤
∑

f :(m,n)∈Rf

(1 + min

{
γ,

1

Q(m,n)(t)

}
) (Xf + δ)

=
∑

f :(m,n)∈Rf

(1 + ϵ)Xf

−
∑

f :(m,n)∈Rf

(ϵ−min

{
γ,

1

Q(m,n)(t)

}
)Xf

+
∑

f :(m,n)∈Rf

(1 + min

{
γ,

1

Q(m,n)(t)

}
)δ

≤
∑

f :(m,n)∈Rf

µ̄f
(m,n)

−
∑

f :(m,n)∈Rf

(ϵ−min

{
γ,

1

Q(m,n)(t)

}
)Xf

+
∑

f :(m,n)∈Rf

(1 + min

{
γ,

1

Q(m,n)(t)

}
)δ

= µ̄(m,n)

−
∑

f :(m,n)∈Rf

(ϵ−min

{
γ,

1

Q(m,n)(t)

}
)Xf

+
∑

f :(m,n)∈Rf

(1 + min

{
γ,

1

Q(m,n)(t)

}
)δ (5.9)

The dynamic of per-link queues can be rewritten as

Q(m,n)(t+ 1) = Q(m,n)(t)− s(m,n)(t) + u(m,n)(t) + a(m,n)(t),

where u(m,n)(t) is the unused service due to the lack of packets in queue. It is easy to see that

when Q(m,n)(t) > µmax, u(m,n)(t) = 0, so Q(m,n)(t)× u(m,n)(t) ≤ µ2
max.

We construct Lyapunov function as follows:

V (t) =
∑

(m,n)∈L

Q2
(m,n)(t).

www.manaraa.com

103

Then

V (t+ 1)− V (t)

=
∑

(m,n)∈L

Q2
(m,n)(t+ 1)−

∑
(m,n)∈L

Q2
(m,n)(t)

=
∑

(m,n)∈L

(
Q(m,n)(t+ 1) +Q(m,n)(t)

)
×

(
Q(m,n)(t+ 1)−Q(m,n)(t)

)
=

∑
(m,n)∈L

(
2Q(m,n)(t) + a(m,n)(t) + u(m,n)(t)− s(m,n)(t)

)
×
(
a(m,n)(t) + u(m,n)(t)− s(m,n)(t)

)
≤ M1 +

∑
(m,n)∈L

2Q(m,n)(t)
(
a(m,n)(t)− s(m,n)(t)

)
= M1

+
∑

(m,n)∈L

2Q(m,n)(t)
(
a(m,n)(t)− µ̄(m,n)

)
(5.10)

+
∑

(m,n)∈L

2Q(m,n)(t)
(
µ̄(m,n) − s(m,n)(t)

)
, (5.11)

where M1 = 2Lµ2
max + L [(maxf Xf + δ)× F + µmax]

2 .

From inequality (5.9), we can get∑
(m,n)∈L

2Q(m,n)(t)×
(
a(m,n)(t)− µ̄(m,n)

)

≤
∑

(m,n)∈L

2Q(m,n)(t)

 ∑
f :(m,n)∈Rf

(1 + min

{
γ,

1

Q(m,n)(t)

}
)δ

−
∑

f :(m,n)∈Rf

(ϵ−min

{
γ,

1

Q(m,n)(t)

}
)Xf


≤

∑
(m,n)∈L

2Q(m,n)(t)

min

{
γ,

1

Q(m,n)(t)

}∑
f∈F

Xf + Fδ


+Fδ −

∑
f :(m,n)∈Rf

ϵXf


≤ M2 +

∑
(m,n)∈L

2Q(m,n)(t)

Fδ −
∑

f :(m,n)∈Rf

ϵXf


where M2 = 2L

(∑
f∈F Xf + Fδ

)
.

www.manaraa.com

104

Furthermore, from the MaxWeight scheduler (5.5) and necessary condition (5.3),

∑
(m,n)∈L

2Q(m,n)(t)×
(
µ̄(m,n) − s(m,n)(t)

)
≤

∑
(m,n)∈L

2Q(m,n)(t)×
(
µ̄(m,n) − µ∗

(m,n)(t)
)
+M3

≤ M3,

where M3 = 2Lµ2
max.

Therefore, we conclude that

V (t+ 1)− V (t)

≤ M1 +M2 +M3

+
∑

(m,n)∈L

2Q(m,n)(t)

Fδ −
∑

f :(m,n)∈Rf

ϵXf

 .

It is easy to see that when {f ∈ F : (m,n) ∈ Rf} = ∅, Q(m,n)(t) = 0. So

∑
(m,n)∈L

2Q(m,n)(t)

Fδ −
∑

f :(m,n)∈Rf

ϵXf


≤

∑
(m,n)∈L

2Q(m,n)(t)

(
Fδ − ϵmin

f
Xf

)
.

If we further choose δ such that δ ≤ ϵminf Xf

2F , we have

∑
(m,n)∈L

2Q(m,n)(t)

Fδ −
∑

f :(m,n)∈Rf

ϵXf


≤

∑
(m,n)∈L

2Q(m,n)(t)

(
−1

2
ϵmin

f
Xf

)
.

Now note that max(m,n)∈LQ(m,n)(t) ≥
√

V (t)
L . Suppose M > 0 is a positive constant, then

when V (t) > L
(
M1+M2+M3+M

ϵminf Xf

)2
,

max
(m,n)∈L

Q(m,n)(t) >
M1 +M2 +M3 +M

ϵminf Xf
.

www.manaraa.com

105

So we have

V (t+ 1)− V (t)

≤ M1 +M2 +M3

+
∑

(m,n)∈L

2Q(m,n)(t)

(
−1

2
ϵmin

f
Xf

)
≤ M1 +M2 +M3 − max

(m,n)∈L
Q(m,n)(t)(ϵmin

f
Xf)

≤ −M

From the above analysis we can see, when t > T (δ), if V (t) > L
(
M1+M2+M3+M

ϵminf Xf

)2
, the

drift of the Lyapunov function is negative. Moreover, when t ≤ T (δ), V (t) ≤ L (FXmaxT (δ))2.

Therefore, there exists a constant CV such that V (t) ≤ CV for all t. So Q(m,n)(t) ≤
√
CV , C

for any (m,n) ∈ F and t.

Next, based on Lemma 15, we will prove that all per-flow queues are bounded as well.

Lemma 16. Given a set of traffic flows {Xf} such that {(1 + ϵ)Xf} is supportable for some

ϵ > 0, under the self-regulated MaxWeight scheduling, there exists a constant C̃ such that, the

lengths of the per-flow queues are no more than C̃ for all t.

Proof. First let’s focus on the source node Sf of flow f . Suppose n2
f is the second hop on the

route of flow f . For node Sf we have the rate estimate

X̃
Sf

f (t) = (1 + min

{
γ,

1

Q(Sf ,n
2
f)
(t)

}
)
Af (t)

t
.

From property (5.1) we know,
Af (t)

t → Xf as t → ∞. Furthermore, according to Lemma

15, Q(Sf ,n
2
f)
(t) < C for all t. Combining these two facts, we can always find ts such that when

t > ts, X̃
Sf

f (t) > (1 + 1
2C)Xf .

We define a “super time slot” for node Sf , which consists of Ms time slots, where Ms is a

positive number. We index the super time slot using T . Suppose a
Sf

f (T) is the arrival packets

of flow f at node Sf during super time slot T , then due to (5.1),
a
Sf
f (T)

Ms
→ Xf when Ms → ∞.

www.manaraa.com

106

In other words, for a constant ηs such that 0 < ηs <
Xf

2C , we can always find an Ms such that

a
Sf
f (T)

Ms
< Xf + ηs. In other words,

a
Sf

f (T) < XfMs + ηsMs.

On the other hand, for MsT > ts, during super time slot T + 1, X̃
Sf

f (t) > (1 + 1
2C)Xf . In

other words, the aggregated service rate of Q
Sf

f during T + 1 is at least (1 + 1
2C)MsXf . Since

ηs <
Xf

2C , we have

a
Sf

f (T) < XfMs + ηsMs < (1 +
1

2C
)MsXf .

From above analysis we can see, the packets arriving at node Sf during super time slot T

can be completely served during super time slot T + 1, if MsT > ts. Since the arrival packets

to node Sf before time ts is at most Xmaxts, it is easy to see that there exists a constant Cs

such that Q
Sf

f (t) < Cs for all t.

Next we use induction to prove all per-flow queues are bounded by a constant. Denote by

ni
f the ith node on the route of flow f. Now assume that

Q
nj
f

f (t) ≤ Ci for all t and j ≤ i. (induction assumption)

We next define

Cδ = i(Ci + C).

First consider the departures of the per-flow queue Q
ni+1
f

f at node ni+1
f . It is easy to see

that
t∑

τ=1

a
Sf

f (τ) ≥
t∑

τ=1

a
ni+1
f

f (τ) ≥
t∑

τ=1

a
Sf

f (τ)− Cδ

because Cδ is an upper bound on the number of packets belonging to flow f and queued at

nodes n1
f to node ni

f (the up-streaming nodes of node i+ 1). So according to (5.1) we have,

∑t
τ=1 a

ni+1
f

f (τ)

t
→ Xf

as t → ∞. Moreover, based on Lemma 15, Q(ni+1
f ,ni+2

f)(t) < C for any t. Therefore, there

exists some ti, such that when t > ti,

X̃
ni+1
f

f (t) > (1 +
1

2C
)Xf .

www.manaraa.com

107

Then let’s see the arrivals of the per-flow queue Q
ni+1
f

f at node ni+1
f . We define a “super

time slot” for node ni+1
f , each super time slot consists of Mi time slots, where Mi is a positive

number. We index the super time slots using T. According to (5.1), for any ηi > 0, there exists

some large enough Mi such that the total arrival packets at source node Sf during super time

slot T satisfies

a
Sf

f (T) ≤ Mi(Xf + ηi).

Thus the total arrival packets at node ni+1
f during super time slot T satisfies

a
ni+1
f

f (T) ≤ Mi(Xf + ηi) + Cδ.

Now we can consider the dynamic of Q
ni+1
f

f . We select large enough Mi and small enough

ηi > 0 such that Mi(
1
2CXf − ηi) > Cδ. For the arrival part,

a
ni+1
f

f (T) ≤ Mi(Xf + ηi) + Cδ.

On the other hand, for MiT > ti, during super time slot T + 1, the rate estimate

X̃
ni+1
f

f (t) > (1 +
1

2C
)Xf .

In other words, the aggregated service rate of Q
ni+1
f

f during T +1 is at least (1+ 1
2C)MiXf . So

we have

a
ni+1
f

f (T) ≤ Mi(Xf + ηi) + Cδ < (1 +
1

2C
)MiXf .

From above analysis we know, the available service rate for the per-flow queue Q
ni+1
f

f during

super time slot T + 1 is always greater than the arrivals at super time slot T if MiT > ti. In

other words, under the proposed scheme, the arrival packets at super time slot T can always

be completely served by the end of super time slot T + 1. Since the arrival packets to Q
ni+1
f

f

before time ti is at most Xmaxti, there exists a Ci+1 value such that Q
ni+1
f

f (t) ≤ Ci+1 for all t.

Then the lemma follows from the induction principle.

Based on Lemma 15 and Lemma 16, we directly have the following theorem.

Theorem 17. Given a set of flows with arrival rates {Xf} such that {(1+ϵ)Xf} is supportable

for some ϵ > 0, all queues under the self-regulated MaxWeight algorithm are bounded.

www.manaraa.com

108

5.4 Simulations

In this section, we use simulations to see the performance of the self-regulated MaxWeight

algorithm, compared to the well-known back pressure algorithm.

5.4.1 Simulation Settings

The network we are simulating is shown in Figure 5.3. Basically we are simulating a grid

network with 8 × 8 nodes and some random long links. All links are bi-directional links, and

each link has capacity 1, i.e., in each time slot each link can transmit at most one packet at each

direction. We further assume that all links can be activated simultaneously. All nodes in the

network are full-duplex. In other words, they can transmit and receive packets concurrently.

The nodes are indexed regularly, as can be seen on the figure.

Figure 5.3 Network topology

There are 8 flows in the network, and each of the flows is associated with a fixed route.

The flow routes are shown in Table 5.1. From the table we can see, there are no two flows

sharing a single link. In this case the stability region of the network is Xf < 1 for all f . In

the simulation, we set all Xf ’s to be identical, varying from 0.1 to 0.9 to represent different

traffic loads. For each simulation scenario, we run it for 100, 000 time slots. Note that in the

www.manaraa.com

109

Table 5.1 The flows in the network

Flow ID Route

0 8 → 9 → 10 → 11 → 12 → 13 → 14 → 6

1 17 → 18 → 19 → 28 → 29 → 30

2 38 → 37 → 36 → 35 → 34 → 33 → 32

3 46 → 45 → 53 → 52 → 60 → 59 → 58

4 17 → 16 → 24 → 32 → 41

5 19 → 18 → 26 → 34 → 42 → 50 → 49

6 43 → 44 → 36 → 28 → 20 → 21 → 22

7 55 → 47 → 39 → 31 → 23 → 22

self-regulated MaxWeight algorithm, γ is set to be 10.

We look at two performance metrics, which are the total queue length in the network, and

the average end-to-end delay. Also, since [18] points out that under the back pressure algorithm,

the sum of the queue lengths along a route increases quadratically as the route length, which

leads to a poor delay performance, it would be interesting to see this phenomenon.

5.4.2 The Case of Constant Arrivals

First we are considering the case of constant arrivals. In other words, in each simulation

scenario, Xf (t) = λ for all f and t, where λ is the arrival rate of flows (a constant). Note that

under constant arrival rate, the traffic property (5.1) is automatically satisfied.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

40

80

120

160

Arrival rate of flows

T
ot

al
 q

ue
ue

 le
ng

th
 in

 th
e

ne
tw

or
k

Back pressure
Self−regulated MaxWeight

Figure 5.4 Total queue lengths in the network under constant arrivals

www.manaraa.com

110

The total queue lengths in the network are shown in Figure 5.4. As it can be seen from

the graph, when the traffic loads are low, i.e., λ ≤ 0.5, the total queue lengths under both

algorithms are similarly low. But under high traffic loads, the back pressure algorithm performs

much worse than the self-regulated MaxWeight algorithm. The reason why the back pressure

has a good performance in low traffic regime is that, when λ ≤ 0.5, each source node at most

generates a packet in two consecutive slots in a deterministic pattern due to constant arrival.

Suppose a source generates a packet at slot 1, then it will be immediately transmitted to the

second hop on the route since the second hop has queue length 0. In slot 2, the packet is

transmitted to the third hop. So when the source generates another packet in slot 3, it will be

transmitted to the second hop immediately because the queue length at the second hop has

already return 0. So on and so forth. Therefore the packet transmission under the back pressure

algorithm when λ < 0.5 is highly efficient which results in a good performance. However, under

high traffic loads above packet transmission pattern does not hold so the performance of the

back pressure algorithm becomes poor.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Arrival rate of flows

A
ve

ra
ge

 e
nd

−
to

−
en

d
de

la
y

Back pressure
Self−regulated MaxWeight

Figure 5.5 Average end-to-end delay under constant arrivals

The situation of average end-to-end delay can be seen in Figure 5.5. Average end-to-end

delay is defined to be the average time consumed to transmit a packet from the source to the

destination. From the figure we can see, similar to the situation of total queue lengths, two

algorithms have similar performance under low traffic loads, but in the regime of heavy traffic,

www.manaraa.com

111

the self-regulated MaxWeight algorithm outperforms the back pressure algorithm significantly.

We notice that under heavy traffic, as λ increases the delay decreases for the back pressure

algorithm. It is possible because due to the Little’s Law, when both λ and total queue lengths

increase, whether the delay will increase or not depends on the rates at which λ and total

queue lengths increase.

1 2 3 4 5 6 7
0

5

10

15

20

25

30

Hops to the destination

C
um

ul
at

iv
e

qu
eu

e
le

ng
th

flow 0, back pressure
flow 3, back pressure
flow 0, self−regulated MaxWeight
flow 3, self−regulated MaxWeight

Figure 5.6 Cumulative queue lengths versus hops under constant arrivals

Figure 5.6 depicts the cumulative queue lengths versus hops to the destination. On the

graph, X-axis denotes the segment of the route that is within n hops to the destination, and

Y-axis is the cumulative queue length of the corresponding route segment. We randomly pick

two flows which are flow 0 and flow 3 to see the situation. Basically, for the back pressure

algorithm, the cumulative queue length increases quadratically as n increases, which is con-

sistent with the findings in [18]. For the self-regulated MaxWeight algorithm, the cumulative

queue length increases linearly as n. This is reasonable because we don’t need to build up

positive “pressure” to push the packets to the destination under the self-regulated MaxWeight

algorithm. Whenever there is a packet in queue, it can be push to the next hop. This is the

essential reason why our self-regulated MaxWeight algorithm outperforms the back pressure

algorithm in terms of queue lengths and delay.

www.manaraa.com

112

5.4.3 The Case of Light-tailed Stochastic Traffic

Next we consider the case of light-tailed stochastic traffic. We assume the number of

arriving packets of each flow follows Poisson distribution with parameter λ, i.e., E[Xf (t)] = λ

for all f .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

40

80

120

160

200

Arrival rate of flows

T
ot

al
 q

ue
ue

 le
ng

th
 in

 th
e

ne
tw

or
k

Back pressure
Self−regulated MaxWeight

Figure 5.7 Total queue lengths in the network under Poisson arrivals

The situation of total queue lengths is shown in Figure 5.7. We can see from the curves

that our proposed algorithm has a much better performance than the well-known back pressure

algorithm in terms of total queue lengths, especially in heavy traffic regime. The reason is that

for our algorithm, the network does not need to build up positive queue difference to transmit

packets down to the destination, so the packets queued in the network are less than the case

of back pressure algorithm

Furthermore, Figure 5.8 shows that the self-regulated MaxWeight algorithm results in much

smaller end-to-end delay compared to the back pressure algorithm. This is a natural result

following directly from the situation of total queue lengths and the Little’s Law.

Similar to the case of constant arrivals, Figure 5.9 illustrates that the queue length accu-

mulates quadratically from the destination to the source for the back pressure algorithm, while

for the self-regulated MaxWeight algorithm, it accumulates only linearly. This phenomenon

directly leads to different performances of the two algorithms in total queued packets in the

network.

www.manaraa.com

113

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Arrival rate of flows

A
ve

ra
ge

 e
nd

−
to

−
en

d
de

la
y

Back pressure
Self−regulated MaxWeight

Figure 5.8 Average end-to-end delay under Poisson arrivals

5.4.4 The Case of Heavy-tailed Stochastic Traffic

This subsection we look at the scenario where the traffic is heavy-tailed stochastic traffic.

In this case there are sometimes burst arrivals in the network. We want to see whether they will

have bad impacts on the system-wide performance or not. We assume the number of arrival

packets follows Pareto distribution with scale parameter xm = 0.05 and shape parameter α.

Note that here the arrival rate λ = αxm
α−1 . So given a λ > 0.1, we should have α = λ

λ−xm
.

The situations of total queued packets, average end-to-end delay and cumulative queue

lengths along routes are illustrated in Figure 5.10, 5.11 and 5.12 respectively. From them

we can see, even when the packet arrival processes are heavy-tailed, we can still see similar

phenomena as in the case of light-tailed traffic. In other words, the existence of burst arrivals

does not have bad effect on our proposed algorithm, and it still has much better performances

than the back pressure algorithm.

5.5 Conclusion

In this chapter, we considered the scheduling problem in multihop wireless networks,and

proposed the self-regulated MaxWeight scheduling that does not require the exchange of queue-

length information among neighboring nodes, hence completely eliminates the communication

www.manaraa.com

114

1 2 3 4 5 6 7
0

5

10

15

20

25

30

Hops to the destination

C
um

ul
at

iv
e

qu
eu

e
le

ng
th

flow 0, back pressure
flow 3, back pressure
flow 0, self−regulated MaxWeight
flow 3, self−regulated MaxWeight

Figure 5.9 Cumulative queue lengths versus hops under Poisson arrivals

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Arrival rate of flows

T
ot

al
 q

ue
ue

 le
ng

th
 in

 th
e

ne
tw

or
k

Back pressure
Self−regulated MaxWeight

Figure 5.10 Total queue lengths in the network under Pareto arrivals

overhead when combined with recent CSMA-based scheduling algorithms. The new algorithm

is proved to be throughput optimal and has a much better performance compared to the

well-known back pressure algorithm.

www.manaraa.com

115

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

4

8

12

16

20

Arrival rate of flows

A
ve

ra
ge

 e
nd

−
to

−
en

d
de

la
y

Back pressure
Self−regulated MaxWeight

Figure 5.11 Average end-to-end delay under Pareto arrivals

1 2 3 4 5 6 7
0

3

6

9

12

15

Hops to the destination

C
um

ul
at

iv
e

qu
eu

e
le

ng
th

flow 0, back pressure
flow 3, back pressure
flow 0, self−regulated MaxWeight
flow 3, self−regulated MaxWeight

Figure 5.12 Cumulative queue lengths versus hops under Pareto arrivals

www.manaraa.com

116

CHAPTER 6. Summary and Acknowledgement

In my Ph.D. research, I focused on the resource allocation problem in wireless networks

in the presence of flow-level dynamics. I first investigated the scheduling problem in wireless

cellular networks, including single-channel and multi-channel networks. Then, I investigated

the joint congestion control and scheduling problem in wireless peer-to-peer networks and

proposed an optimal architecture which can maximize the social welfare while satisfying the

delay constraints of packets. At last, in Chapter 5, I described my work on the scheduling

problem in multihop wireless networks. The scheduling algorithm developed is proved to be

optimal and has superior performance than previous algorithms.

Acknowledgement: My Ph.D. works are joint works with Prof. Lei Ying, Prof. R.

Srikant, Prof. Eylem Ekici and Dr. J. J. Jaramillo. I hereby thank them for their insightful

guidance.

www.manaraa.com

117

BIBLIOGRAPHY

[1] P. van de Ven, S. Borst, and S. Shneer, “Instability of MaxWeight Scheduling Algorithms,”

in Proc. IEEE Infocom., Rio de Janeiro, Brazil, April 2009.

[2] B. Sadiq and G. de Veciana, “Throughput Optimality of Delay-driven Maxweight Sched-

uler for a Wireless System with Flow Dynamics,” in Proc. Ann. Allerton Conf. Commu-

nication, Control and Computing, 2009.

[3] L. Tassiulas and A. Ephremides, “Stability Properties of Constrained Queueing Systems

and Scheduling Policies for Maximum Throughput in Multihop Radio Networks”, in IEEE

Transactions on Automatic Control, Vol. 37, No. 12, pp. 1936-1949, December 1992.

[4] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar, and P. Whiting,

“Scheduling in a Queueing System with Aynchronously Varying Service Rates,” Probability

in the Engineering and Informational Sciences, vol. 18, pp. 191–217, 2004.

[5] A. Eryilmaz, R. Srikant, and J. R. Perkins, “Stable Scheduling Policies for Fading Wireless

Channels,” in IEEE/ACM Trans. Network., vol. 13, no. 2, pp. 411–424, 2005.

[6] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic Power Allocation and Routing for

Time Varying Wireless Networks,” in IEEE Journal on Selected Areas in Communications,

Special Issue on Wireless Ad-Hoc Networks, vol. 23, no. 1, pp. 89-103, Jan. 2005.

[7] X. Liu, E. Chong, and N. Shroff, “Opportunistic Transmission Scheduling with Resource-

Sharing Constraints in Wireless Networks,” in IEEE Journal on Selected Areas in Com-

munications, vol. 19, no. 10, pp. 2053-2064, Oct, 2001.

www.manaraa.com

118

[8] P. Viswanath, D. Tse and R. Laroia, “Opportunistic Beamforming Using Dumb Anten-

nas,” in IEEE Transactions on Information Theory, Vol. 48, No. 6, pp. 1277-1294, June

2002.

[9] X. Lin, N. B. Shroff and R. Srikant, “A Tutorial on Cross-Layer Optimization in Wireless

Networks,” in IEEE Journal on Selected Areas in Communications, vol. 24, no. 8, August

2006.

[10] L. Georgiadis, M. Neely and L. Tassiulas, Resource Allocation and Cross Layer Control

in Wireless Networks, NoW publishers, 2006.

[11] S. Shakkottai and R. Srikant, Network Optimization and Control. NoW publishers, 2007.

[12] S. Asmussen. Applied Probability and the Theory of Queues. Springer, 2003.

[13] S. Meyn and R. L. Tweedie, Markov chains and stochastic stability. Cambridge University

Press, 2009.

[14] L. Tassiulas, and A. Ephremides, “Dynamic Server Allocation to Parallel Queues with

Randomly Varying Connectivity,” in IEEE Transaction on Information Theory, vol. 39,

pp. 466-478, March 1993.

[15] Rajiv Laroia, “Future of Wireless? The Proximate Internet,” 2010. http://www.cedt.

iisc.ernet.in/people/kuri/Comsnets/Keynotes/Keynote-Rajiv-Laroia.pdf

[16] S. Liu, L. Ying and R. Srikant, “Throughput-Optimal Opportunistic Scheduling in the

Presence of Flow-Level Dynamics,” in IEEE/ACM Transactions on Networking, Vol. 19,

No. 4, pp 1057-1070, August, 2011.

[17] S. Liu, L. Ying, and R. Srikant, “Scheduling in Multichannel Wireless Networks with

Flow-level Dynamics,” in Proc. Ann. ACM Sigmetrics Conf, New York City, NY, 2010.

[18] L. Bui, R. Srikant, and A. L. Stolyar, “Novel Architecture and Algorithms for Delay

Reduction in Back-pressure Scheduling and Routing”, in Proc. IEEE INFOCOM Mini

Conference, 2009.

www.manaraa.com

119

[19] L. Jiang and J. Walrand, “Distributed CSMA Algorithm for Throughput and Utility

Maximization in Wireless Networks”, in Proc. Allerton Conference, Monticello, Illinois,

2008.

[20] J. Ni and R. Srikant, “Distributed CSMA/CA Algorithms for Achieving Maximum

Throughput in Wireless Networks”, in Information Theory and Applications Workshop,

2009.

[21] S. Rajagopalan, D. Shah, and J. Shin, “Network Adiabatic Theorem: An Efficient Ran-

domized Protocol for Contention Resolution”, in Proc. ACM SIGMETRICS, 2009.

[22] C. Humes, “A Regulator Stabilization Technique: Kumar-seidman Revisited”, in IEEE

Transactions on Automatic Control, vol. 39, no. 1, pp. 191C196, Janunary 1994.

[23] X. Wu and R. Srikant, “Regulated Maximal Matching: A Distributed Scheduling Algo-

rithm for Multi-hop Wireless Networks with Nodeexclusive Spectrum Sharing”, in Proc.

Conference on Decision and Control, 2005.

[24] J. J. Jaramillo, R. Srikant and L. Ying, “Scheduling for Optimal Rate Allocation in Ad

Hoc Networks With Heterogeneous Delay Constraints”, in IEEE Journal on Selected Areas

in Communications, Vol. 29, No. 5, May, 2011.

[25] D. G. Luenberger, “Linear and Nonlinear Programming”, 2nd ed. Norwell, MA: Kluwer

Academic Publishers, 2003.

[26] S. Boyd and L. Vandenberghe, “Convex Optimization”, 1st ed. New York, NY: Cambridge

University Press, Mar. 2004.

[27] J. J. Jaramillo and R. Srikant, “Optimal Scheduling for Fair Resource Allocation in Ad

Hoc Networks with Elastic and Inelastic Traffic”, in Proc. IEEE INFOCOM, San Diego,

CA, USA, 2010.

[28] M. J. Neely, E. Modiano, and C.-P. Li, “Fairness and Optimal Stochastic Control for

Heterogeneous Networks”, in Proc. IEEE INFOCOM, Miami, FL, 2005.

www.manaraa.com

120

[29] A. Stolyar, “Maximizing Queueing Network Utility Subject to Stability: Greedy Primal-

dual Algorithm”, in Queueing Systems, vol. 50, no. 4, pp. 401 – 457, Aug. 2005.

[30] A. Eryilmaz and R. Srikant, “Fair Resource Allocation in Wireless Networks Using Queue-

length-based Scheduling and Congestion Control”, in Proc. IEEE INFOCOM, Miami, FL,

2005.

	2012
	Resource allocation in wireless networks with flow level dynamics
	Shihuan Liu
	Recommended Citation

	tmp.1370013123.pdf.Pdjxs

